
www.RIEVTECH.com

Installation and wiring
Programming
Configuring software
Applications
Technical data

RIEVTECH USER MANUAL
+ Programming guide

Ver. 2.0.0.1

http://www.RIEVTECH.com

Introduction--- 1
Valid range of this manual-- 2
Safety Guideline-- 2
Qualified Personnel-- 3
Prescribed Usage--- 3

Warning--3
Trademarks-- 3
Copyright Rievtech 2016 all rights reserved--- 4
Disclaim of Liability-- 4
Additional support--- 4

1 .what is Xlogic ?---5
1.1 Overview-- 5
1.2 Highlight feature--- 5
1.3 Some of the things xLogic can do for you?-- 7
1.4 xLogic devices：--- 7

xLogic Basic is available in two voltage classes-- 7
Expansion modules-- 8
Communication cable and module-- 8

2. Hardware introduction--11
2.1 Naming Rules of PR Series PLC--- 11
2.2 Hardware model selection--11
2.3 Structure & dimension-- 13

3 .Installing/removing xLogic--- 16
Dimensions-- 16
3.1 DIN rail mounting-- 17
3.2 Wall-mounting-- 18
3.3 wiring xLogic-- 21
3.4 Connecting the power supply-- 21

3.4.1 Connecting xLogic inputs--- 22
3.4.2 Connecting xLogic Outputs---25
3.4.3 Communication port instructions:-- 28

4.Quick reference manual-- 30
4.1 Special memory area:--- 30
4.2Interrupt Events:-- 30
4.3 High speed counter：--- 30

X Ladder direction for use--32
5.The detailed annotation of operation interface-- 32

5.1The main menu--- 32
5.1.1 File--- 32
5.1.2 Edit--- 33
5.1.3 View--33
5.1.4 PLC--- 35
5.1.5 Debug--36
5.1.6 Help-- 36

5.2 toolbar--- 37
5.3 Instruction tree--- 40

5.3.1 Project--- 41
5.3.2 Data block---41
5.3.3 System block--42
5.3.4 Program block-- 48
5.3.5 Function symbol--- 48
5.3.6 Variable symbol-- 48
5.3.7 Status chart--- 49
5.3.8 Cross reference---49
5.3.9 Communication-- 50
5.3.10 Instructions--- 51
5.3.11 The program editor-- 52
5.3.12 Status chart, information output-- 53

5.4 Programming concepts--54
5.4.1 How the program works-- 54
5.4.2 Addressing overview-- 54
5.4.3 How to organize the program--56

5.5 How to enter the ladder logic program---57
5.5.1 How to build a new project-- 57
5.5.2 Ladder logic element and its working principle--- 57
5.5.3 Network rules for series and parallel in LAD---58
5.5.4 How to input commands in LAD-- 58
5.5.5 How to enter the address in LAD--60
5.5.6 How to edit program elements in LAD--- 60
5.5.7 How to use find / replace---63
5.5.8 How to display errors in LAD in the program editor------------------------------------64
5.5.9 How to compile in LAD--64
5.5.10 How to save the project--- 65

5.6 How to set up a communication and download program------------------------------------- 65
5.6.1 Communication settings-- 65
5.6.2 Download program--67
5.6.3 How to correct compilation errors and download errors------------------------------68

5.7 How to monitor and debug the program---69
5.8 PLC operation and options--73

6.X Ladder instructions descriptions---74
6.1 Bit logic-- 74

6.1.1 Normally open and normally closed-- 74
6.1.2 Normally open immediate and normally closed immediate.------------------------- 76
6.1.3 NOT Reverse instruction-- 76
6.1.4 Rising edge and falling edge--77
6.1.5 Output--- 78
6.1.6 Output immediate--- 78
6.1.7 Set and reset--79

6.1.8 Set immediate and reset immediate--80
6.1.9 SR instruction---80
6.1.10 RS instruction--- 81
6.1.11 NOP instruction---82

6.2 Clock instruction--83
6.2.1 Read and set the real time clock-- 83

6.3 Communication---84
6.3.1 Get port address---84
6.3.2 Set port address--- 84

6.4 Compare---85
6.4.1 Byte compare---85
6.4.2 Integer comparison--87
6.4.3 Double integer comparison-- 88
6.4.4 Real number comparison---89
6.4.5 String comparison--- 90

6.5 Convert-- 91
6.5.1 Byte to integer--91
6.5.2 Integer to byte--92
6.5.3 Integer to double integer--- 92
6.5.4 Integer to string-- 92
6.5.5 Double integer to integer---94
6.5.6 Double integer to real number-- 94
6.5.7 Double integer to string---95
6.5.8 BCD to integer, integer to BCD conversion---96
6.5.9 ROUND-- 97
6.5.10 TRUNC--98
6.5.11 Real number to string--99
6.5.12 Integer to ASCII code--- 101
6.5.13 Double integer to ASCII code--- 103
6.5.14 Real number to ASCII code-- 104
6.5.15 ATH&HTA--- 106
6.5.16 String to integer---107
6.5.17 String to double integer--- 109
6.5.18 String to real number-- 111
6.5.19 DECO--- 113
6.5.20 ENCO--114
6.5.21 Seven segment code--- 115

6.6 Counter---116
6.6.1 CTU--- 116
6.6.2 CTD--- 117
6.6.3 CTUD--- 118

6.7 Floating point calculation--119
6.7.1 ADD-R&SUB-R-- 119
6.7.2 MUL - R&DIV - R-- 121

6.7.3 SQRT--122
6.7.4 SIN--123
6.7.5 COS--- 124
6.7.6 TAN--- 125
6.7.7 LN--- 126
6.7.8 EXP--127
6.7.9 PID--128

6.8 Integer operations-- 131
6.8.1 ADD-I&SUB-I-- 131
6.8.2 ADD- DI & SUB- DI--133
6.8.3 MUL & DIV---134
6.8.4 MUL -I & DIV-I-- 135
6.8.5 MUL -DI & DIV -DI-- 137
6.8.6 INC-B & DEC-B-- 138
6.8.7 INC-W & DEC-W-- 139
6.8.8 INC -DW & DEC -DW--- 140

6.9 Interrupt--- 141
6.9.1 ENI & DISI--141
6.9.2 RETI instruction--- 143
6.9.3 ATCH--- 144
6.9.4 DTCH--- 146
6.9.5 Clear interrupt event-- 148

6.10 Logic operation-- 149
6.10.1 INV -B---149
6.10.2 INV -W-- 150
6.10.3 INV -DW-- 151
6.10.4 WAND-B、WOR -B、WXOR -B--- 152
6.10.5 WAND-W、WOR -W、WXOR -W-- 153
6.10.6 WAND- DW、WOR -DW、WXOR -DW--154

6.11 Move-- 155
6.11.1 Byte move--155
6.11.2 Word move-- 156
6.11.3 Double word move--- 157
6.11.4 Real number move--- 158
6.11.5 BLKMOV -B---159
6.11.6 BLKMOV -W--160
6.11.7 BLKMOV -D-- 161
6.11.8 SWAP--- 162
6.11.9 MOV -BIR---163
6.11.10 MOV -BIW-- 163

6.12 Program control--- 164
6.12.1 FOR、NEXT--164
6.12.2 Jump to label and label-- 166
6.12.3 Sequence control relay---167

6.12.4 Return from subroutine--169
6.12.5 Conditional end--- 170
6.12.6 STOP-- 171
6.12.7 Watchdog Reset---172
6.12.8 Diagnosis LED--173

6.13 Shift cycle---174
6.13.1 SHR -B & SHL -B--- 174
6.13.2 SHR -W & SHL -W--- 176
6.13.3 SHR -DW & SHL -DW--- 177
6.13.4 ROR -B & ROL -B-- 178
6.13.5 ROR -W & ROL -W-- 179
6.13.6 ROR -DW & ROL -DW---180
6.13.7 SHRB-- 181

6.14 Character string--- 182
6.14.1 String length--- 182
6.14.2 Copy string--- 183
6.14.3 SSTR-CPY--- 184
6.14.4 String catenate-- 185
6.14.5 STR -FIND---186
6.14.6 Look for the first character in the string-- 187

6.15 Table---188
6.15.1 Last in first out-- 188
6.15.2 FIFO--- 190
6.15.3 Add to table--192
6.15.4 Memory fill-- 194
6.15.5 Table Find-- 195

6.16 Timer-- 197
6.16.1 Switch on delay timer-- 197
6.16.2 TONR--- 199
6.16.3 Disconnect delay timer-- 200
6.16.4 Start time interval-- 201
6.16.5 Calculation interval time---202

6.17 Pulse train output--- 203
6.17.1 Pulse output--- 203
6.17.2 Pulse width modulation--- 205

6.18 Subroutine--- 206
6.18.1 Using subroutine--206
6.18.2 Using parameters to call subroutine---207
6.18.3 How to set up a subroutine--- 208
6.18.4 How to call a subroutine---209

7.PLC storage area---212
7.1 Storage area types and properties--- 212
7.2 Direct and indirect addressing--213
7.3 Bit, byte, word and double word access-- 216

7.4 Memory address range-- 216
7.5 Data type---217
7.6 Constant--218

8.Assignment and function of SM special storage area--- 219
9.Easy ladder communication--- 220

9.1 PR series PLC basic introduction of network communication------------------------------- 220
9.2 PR series PLC communication-- 222
9.3 Optimize network performance-- 230

10.Additional chapter-- 231
10.1 How to switch PLC mode---231
10.2 Value range of analog quantity:---232
10.3 Extension module address---232
10.4 PLC host address range---233
10.5 Formula--- 233
10.6 Set extension module address with a dial switch-- 234
10.7 Additional instructions--- 235

10.7.1 LCD related instructions--- 235
10.7.2 CAN, serial port initialization instructions-- 244

10.8 Example of serial port free port communication---245
10.9 Example of CAN free port--247
10.10 MODBUS communication master program--249
10.11 The example of using PID instruction-- 250

MODBUS ADDRESS--254

1

Introduction

Congratulations with your xLogic Micro PLC provided by Rievtech

Electronic Co., Ltd.

The xLogic Micro PLC is a compact and expandable CPU replacing mini PLCs,

multiple timers, relays and counters.

The xLogic Micro PLC perfectly fits in the space between timing relays

and low-end PLCs. Each CPU incorporates not only a real-time clock and

calendar, but also provides support for optional expansion I/O modules

to enhance control and monitoring applications. Data adjustments can

easily be performed via the keypad, the LCD display, or through the

Rievtech-to-use xLogic soft. DIN-rail and panel-mounted options are both

available, offering full flexibility to the various installation needs

of your application.

The xLogic Micro PLC is available in 120V/240V AC or 12V and 24V DC versions,

making it the ideal solution for relay replacement, or simple control

applications as building and parking lot lighting, managing automatic

lighting, access control, watering systems, pump control, ventilation

systems, home automation and a wide field of other applications demanding

low cost to be a primary design issue.

We strongly recommended taking the time to read this manual, before

putting the xLogic Micro PLC to work. Installation, programming and use

of the unit are detailed in this manual. The feature-rich xLogic Micro

PLC provides a for off-line operation mode, allowing full configuration

and testing prior to in-field service commissioning. In reviewing this

manual you will discover many additional advantageous product properties,

it will greatly simplify and optimize the use of your xLogic Micro PLC.

2

Valid range of this manual

The manual applies to devices of PR series PLC.

Safety Guideline

This manual contains notices you have to observe in order to ensure your

personal safety, as well as to prevent damage to property. The notices

referring to your personal safety are highlighted in the manual by a safety

alert symbol; notices referring to property damage only have no safety

alert symbol. The notices shown below are graded according to the degree

of danger.

Caution

Indicates that death or severe personal injury may

result if proper precautions are not taken

Caution

With a safety alert symbol indicates that minor

personal injury can result if proper precautions are

not taken.

Caution

Without a safety alert symbol indicates that property

damage can result if proper precautions are not taken.

Attention

Indicate that an unintended result or situation can

occur if the corresponding notice is not taken into

account.

If more than one degree of danger is present, the warning notice

representing the highest degree of danger will be used. A notice warning

3

of injury to persons with a safety alert symbol may also include a warning

relating to property damage.

Qualified Personnel

The device/system may only be set up and used in conjunction with this

documentation. Commissioning and operation of a device/system may only

be performed by qualified personnel. Within the context of the safety

notices in this documentation qualified persons are defined as persons

who are authorized to commission, ground and label devices, systems and

circuits in accordance with established safety practices and standards.

Please read the complete operating instructions before installation and

commissioning.

Rievtech does not accept any liability for possible damage to persons,

buildings or machines, which occur due to incorrect use or from not

following the details.

Prescribed Usage

Note the following:

Warning

This device and its components may only be used for the applications

described in the catalog or the technical description, and only in

connection with devices or components from other manufacturers which have

been approved or recommended by Rievtech. Correct, reliable operation of

the product requires proper transport, storage, positioning and assembly

as well as careful operation and maintenance.

Trademarks

All names identified by xLogic are registered trademarks of the Rievtech.

The remaining trademarks in this publication may be trademarks whose use

by third parties for their own purposes could violate the rights of the

owner.

4

Copyright Rievtech 2016 all rights reserved

The distribution and duplication of this document or the utilization and

transmission of its contents are not permitted without express written

permission. Offenders will be liable for damages. All rights, including

rights created by patent grant or registration of a utility model or design,

are reserved.

Disclaim of Liability

We have reviewed the contents of this publication to ensure consistency

with the hardware and software described. Since variance cannot be

precluded entirely, we cannot guarantee full consistency. However, the

information in this publication is reviewed regularly and any necessary

corrections are included in subsequent editions.

Additional support

We take pride in answering your question as soon as we can:

Please consult our website at www.rievtech.com for your closest point of

contact or email us at sales@rievtech.com

http://www.rievtech.com
mailto:sales@rievtech.com

5

1 .what is Xlogic ?

1.1 Overview

xLogic is a universal logic module made by Rievtech.

xLogic , a compact, expandable CPU that can replace mini PLC, multiple

timers, relays and counters, Splitting the difference between a timing

relay and a low-end PLC, Each CPU has a real-time clock and calendar,

and supports optional expansion I/O modules to enhance your control and

monitoring applications . Data adjustments can be done via the on-board

keypad and LCD display, or with xLogic soft. It can be either DIN-rail

or panel mounted, depending upon the needs of your application, and it

is available in 120V/240V ac as well as 12V and 24V dc versions, and it

is the ideal solution for relay replacement applications, simple control

applications such as building and parking lot lighting, managing

automatic lighting, access control, watering systems, pump control, or

ventilation systems in factory, and home automation and applications in

which cost is a primary design issue.

1.2 Highlight feature

l Multiple value display and input via keypad and LCD display.

l Unique ladder diagram, improves your programming efficiency.

l Standard Modbus RTU/ASCII/TCP communication protocol supported.

l It’s optional for xLogic to act as slave or master in certain Modbus

communication network.(easy connect to other factory touch screen by

RS232 cable, RS485 module)

l Support free port communication, CAN communication and MODBUS

communication

l Expandable up to 16 linked IO expansion modules reaching 282 I/O points

in maximum

l Optional RS232, RS485 connectivity

l Multiple channels analog inputs available with DC 0-10V signal ,PT100

6

signal& 0/4….20mA.

l Default Real Time Clock (RTC) and summer/winter timer is

available

l Backup at Real Time Clock (RTC) at 25 °C:20 days

l 4 channels high-speed counting

l Pre-configured standard functions, e.g. on/ off-delays, pulse relay

and softkey

l 2 PWM channels(10KHz in maximum)

l Retentive memory capability (Not applied to PR-6&PR-12-E series CPU)

l RS232 and USB communication download cable with photo-electricity

isolation

l Support ladder diagram programming(Not applied to PR-6&PR-12-E series

CPU)

l Mounting via modular 35mm DIN rail or screw fixed mounting plate

l On-line monitor capability(Free charge SCADA for all series xlogic)

l Datalogging

l Kinds of analog signals process capacity (DC 0..10V ,0/4...20mA and

PT100 probe inputs and DC 0..10V and 0/4...20mA outputs)

l Low cost

7

1.3 Some of the things xLogic can do for you?

The xLogic Micro PLC provides solutions for commercial, industrial,

building and

domestic applications such as lighting, pumping, ventilation, shutter

operations or in switching cabinets. The application field is widespread

and these are just a few to mention.

Using the RS485 bus and Ethernet connectivity allows the user to realize

various extensive (real-time) monitoring and control applications.

Special versions without operator panel and display unit are available

for series production applications in small machine, installation and

cabinet building environments to further slash cost.

1.4 xLogic devices：

xLogic Basic is available in two voltage classes:

*Classes 1:DC12-24V: i.e.: PR-6DC Series, PR-12DC series, PR-18 series,

PR-24DC series.

*Classes2: AC110-240V: i.e.: PR-6AC Series, PR-12AC series, PR-18AC

series , PR-24AC series.

In the versions:

* With Display: with “-HMI” model, such as PR-12DC-DA-R-HMI

* Without Display: PR-6 series and with “-CAP” model, such as

PR-12DC-DA-R-CAP. Only PR-12 has -CAP version. PR-18,PR-24 all have

display in default.

8

Expansion modules:

PR-E (applied to PR-18/PR-24 CPU)

* xLogic digital modules are available for operation with 12…24V DC, and

110.. .240 V AC, and are equipped with eight inputs and eight outputs.

* xLogic analog modules are available for operation with 12…24 V DC and

are equipped with six digital and 4 analog inputs.

Communication cable and module:

l xLogic:RS232 communication cable (Model:ELC-RS232)

It is kind of universal cable with photoelectricity isolation which can

be directly connected to standard 9-pin port of PC, also kind of interface

module which can enable user’s program to be downloaded into xLogic CPU

through xLogicsoft for running. It also is the connection cable between

CPU and third party device with the RS232 port(just like HMI) in modbus

communication system.

l xLogic: USB communication cable (Model: ELC-USB).

It is kind of communication cable with photoelectricity isolation through

which PC with USB port only can be connected to xLogic main module,

moreover, it has same features as ELC-RS232 module, so it is quite

convenient for user whose computer has no standard serial port.

l xLogic: PRO-RS485 cable (Model: PRO-RS485).

It is kind of converter cable with photoelectricity isolation to make the

program port serves as RS485 port.

l xLogic: RS485 module（Model：PR-RS485）

isolated 485 converter,used to bring out the terminals of RS485 port

built-in PR-18,PR-24 series CPU for connection with third party devices.

9

Communication / Network

xLogic offers different ways to communicate within the system.

RS485 port

The RS485 port is used for communication between the CPU and various

devices or equipments which have the standard RS485 port. Communicate

using Modbus RTU/ASCII protocol.

Note：PR-RS485 module is required to connect the CPU to RS485 BUS.

RS232 or USB port (ELC-ES232/ ELC-USB needed)

If there is no network required and only one main module with some

expansion modules is needed for the application, the down- and upload of

the project to and from the main module happens over the standard RS232

or USB port. It allows system maintenance like monitoring too.

Note：PR-E-RS485 module is required to connect the CPU to RS485 BUS.

10

Note

xLogic CPU may be equipped with expansion modules of the different voltage

class, but expansion module must be supplied the correct power

corresponding to its type.

11

2. Hardware introduction

2.1 Naming Rules of PR Series PLC

1.Series name

2.E: expansion module

3.Points of input and output

4.Supply power AC or DC

5.Digital/Analog D: digital DA: digital/analog

6.Output type R: relay TP: “NPN” transistor；TN :“PNP” transistor

2.2 Hardware model selection
PR-12 Series CPU Units(None expandable)

Model
Expansio

n
Supply voltage Inputs Outputs High-speed count PWM HMI RTC

PR-12AC-R-HMI no AC110~AC240V 8 digital 4 relays (10A) no no yes yes

PR-12DC-DA-R-HMI no DC12-24V 4(0...10V)+4 digital 4 relays (10A) 4(I5-I8)(60KHZ) no yes yes

PR-12DC-DA-TN-HMI no DC12-24V 4(0...10V)+4 digital
4Transistor(0.3A/PNP

)
4 (I5-I8)(60KHZ) Yes(10KHZ) yes yes

PR-14 Series CPU Units(Expandable)-built-in RS485 port

Model Expansion Supply voltage Inputs Outputs High-speed count PWM HMI RTC

PR-14AC-R-HMI yes
AC110~AC240V

/DC110-DC240V
10 digital 4 relays (10A) no no yes yes

PR-14DC-DA-R-HMI yes DC12-24V
6(0...10V)/6digital+4

digital
4 relays (10A) 4(I7-IA)(60KHZ) no yes yes

PR-18 Series CPU Units(Expandable)

Model Expansion Supply voltage Inputs Outputs High-speed count PWM HMI RTC

PR-18AC-R-HMI yes
AC110~AC240V

/DC110-DC240V
12 digital 6 relays (10A) no no yes yes

PR-18DC-DA-R-HMI yes DC12-24V
6(0...10V)/6digital+6

digital
6 relays (10A) 4(I9-IC)(60KHZ) no yes yes

PR-18DC-DA-RT-HMI yes DC12-24V
6(0...10V)/6digital+6

digital

4 relays (10A)+

2 transistor(0.3A)
4(I9-IC)(60KHZ) yes(10khz) yes yes

12

PR-24 Series CPU Units(Expandable)-built-in RS485 port

Model Expansion Supply voltage Inputs Outputs
High-speed

count
PWM HMI RTC

PR-24AC-R-HMI yes AC110~AC240V 16 digital 10 relays (10A) no no yes yes

PR-24DC-DA-R-HMI yes DC12-24V
6(0...10V)/6digital+8

digital
10 relays (10A) 4(I9-IC)(60KHZ) no yes yes

PR-24DC-DAI-RTA yes DC12-24V

2(0/4...20mA)+

4(0...10V)/4digital+8

digital

6

relays(10A)+2Transistor(0.3A/PNP)

+1(0...10V)/(0...20mA)

4(I9-IC)(60KHZ) YES(10khz) yes yes

Expansion Modules(For PR-18,PR-24 series)

Model Supply voltage Inputs Outputs

PR-E-16AC-R AC110~

AC240V

8 digital 4 relays（10A）+4 relays(3A)

PR-E-16DC-DA-R DC12-24V 4digital+4analog(0..10V)/digital 4 relays（10A）+4 relays(3A)

PR-E-16DC-DA-TN DC12-24V 4digital+4analog(0..10V)/digital 8 transistors(PNP)(0.3A)

PR-E-PT100 DC12-24V 3 Channels PT100, resolution: 0.5°), temperature range : -50℃- 200℃ none

PR-E-AQ-VI DC12-24V none 2 Channels (DC 0…10V/0...20mA)

PR-E-AI-I DC12-24V 4 Channels (0/4…..20 mA), Current Signal none

PR-RS485 DC12-24V isolated 485 converter,used to bring out the terminals of RS485 port built-in PR-18&PR-24 series CPU for connection with third

party devices.

Accessories

RS232 Cable RS232 communication module /download cable between PC and xLogic CPU units

USB Cable USB communication module /download cable between PC and xLogic CPU units

PRO-RS485 Converter cable from program port to RS485 port.

ELC-BATTERY RTC BATTERY, the RTC can be backup for 20days in default, but with this battery, the RTC shall be backup for 1 year(only can be applied with PR-18 CPU).

13

2.3 Structure & dimension

1.Standard PR-12 series with LCD model:

1.Power supply&Input terminals 2. Program Port(can be used as RS232 port

with ELC-RS232 or RS485 port with PRO-RS485) 3.HMI/LCD panel 4.keypad

5.Output terminals

2. PR-14 and PR-18 series model:

1.Power supply&Input terminals 2.HMI/LCD panel 3.keypad 4.Output

terminals 5. Program Port(can be used as RS232 port with ELC-RS232 or

RS485 port with PRO-RS485) 6.Extension port

14

Dimensions of PR-14 and PR-18:

3. PR-24 series CPU

1. Power supply 2.Input 3. Program/RS232 port 4.HMI/LCD panel

5.keypad 6.Extension/RS485 port 7.Output

15

4.PR-E extension module:

1. Power supply&Input terminals 2. Connection cable between CPU and

extension(Detached) 3.Extension port(left) 4. RUN/STOP indicator 5.

Extension port(Right) 6. Output terminals

Dimensions of PR-E:

16

3 .Installing/removing xLogic

Dimensions

The xLogic installation dimensions are compliant with DIN 43880.

xLogic can be snap-mounted to 35 mm DIN rails to EN 50022 or on the wall.

xLogic width:

l PR-14,PR-18 Series CPU has a width of 95mm.

l PR-E expansion modules have a width of 72mm.

l PR-24 Series CPU has a width of 133mm.

l PR-12 Series CPU has a width of 72mm

W a r n i n g

Always switch off power before you “remove” and “insert” an

expansion module.

17

3.1 DIN rail mounting

Mounting

How to mount a xLogic module and an expansion module onto a DIN rail:

1. Hook the xLogic Basic module onto the rail.

2. Push down the lower end to snap it on. The mounting interlock at the

rear must engage.

3. Hook the xLogic expansion module onto the rail

4. Slide the module towards the left until it touches the xLogic CPU.

5. Push down the lower end to snap it on. The mounting interlock at the

rear must engage.

6. Remove the plastic cover in the expansion port of CPU and expansion

module.

7. Plus the connector on the flat cable to CPU

Repeat the expansion module steps to mount further expansion modules.

Note:If you need install the expansion and CPU on different rows, you need

order the longer flat connection which is used to connected with CPU, the

longest distance can be 200meters between the CPU and the end expansion

module.

Removal

To remove xLogic:

if you have installed only one xLogic Basic:

1.Insert a screwdriver into the eyelet at the bottom of the slide interlock

and move the latch downward.

2. Swing the xLogic Basic off the DIN rail.

18

if you have connected at least one expansion module to xLogic Basic:

1. Remove the connector on the flat cable

2. Slide the expansion module off towards the right.

3. Insert a screwdriver into the eyelet at the bottom of

the slide interlock and lever it downward.

4. Swing the expansion module off the profile rail.

Repeat steps 1 to 4 for all other expansion

modules.

3.2 Wall-mounting

For wall-mounting, first slide the mounting slides on the rear side of

the devices towards the outside. You can now wall-mount xLogic by means

of two mounting slides and two ØM4 screws (tightening torque 0.8 to 1.2

Nm).

Drilling template for wall-mounting

Before you can wall-mount xLogic, you need to drill holes using the

template shown below.

All dimensions in mm

Bore hole for Ø M4 screw, tightening torque 0.8 to 1.2 Nm

19

1. xLogic CPU

PR-12 Series CPU

PR-14 and PR-18 series:

1.PR-18 CPU；2. PR-E extension

20

PR-24 series

21

3.3 wiring xLogic

Wire the xLogic by using a screwdriver with a 3-mm blade.

You do not need wire ferrules for the terminals. You can use conductors

with cross-sections of up to the following thicknesses:

1 x 2.5 mm2

2 x 1.5 mm2 for each second terminal chamber

Tightening torque: 0.4.. .0.5 N/m or 3. ..4 lbs/in

Note

Always cover the terminals after you have completed the installation. To

protect xLogic adequately from impermissible contact to live parts, local

standards must be complied with.

3.4 Connecting the power supply

ThePR-12AC,PR-18AC, PR-24AC versions of xLogic are suitable for operation

with rated voltages of 110 V AC and 240 V AC. The PR-12DC,PR-18DC, PR-24DC

versions can be operated with a 12 or 24 VDC power supply.

Note

A power failure may cause an additional edge triggering

signal.

Data of the last uninterrupted cycle are stored in

xLogic

22

To connect xLogic to the power supply:

3.4.1 Connecting xLogic inputs

1.Requirements

the inputs you connect sensor elements such as: momentary switches,

switches, light barriers, daylight control switches etc.

AC Type DC Type

Signal status 0

Input current

<40VAC

<0.03mA

<5VDC

<0.1mA

Signal status 1

Input current

>79VAC

Typical 0.06

0.24mA

>10VDC

Typical 0.3mA

Analogue input NO
AIW0-AIW6(0-10V

DC)(PR-6,PR-12)

23

2. Connecting xLogic is shown as in the following

figures:

* DC type digital inputs

* AC type digital inputs

* Analog Inputs (DC 0…10V)

*Analog inputs current Inputs (0…20mA)

24

The above figure shows how to make a four-wire current measurement.

PR-E-PT100

It can be connected with one two-wire or three-wire resistance-type the

rmocouple.

When two-wire technology applied, the terminals“M1+ and IC1” (this rule

also shall be applied to” M2+ and IC2”, “M3+ and IC3”) would be short

connected. Such connection can not compensate error/tolerance caused by

the resistance in measurement loop. The measurement error of 1 Ω

impedance of power cord is proportional to +2.5 °C

The three-wire technology can inhibit the influence of measurement

results caused by cable length (ohmic resistance).

25

2-wire （short circuit M+ and Ic) 3 wire

3.4.2 Connecting xLogic Outputs

1. Requirement for the relay output

Various loads such as lamp, fluorescent tube, motor, contact, etc., can

be connected to the outputs of xLogic. The maximum ON output current that

can be supplied by xLogic is 10A for the resistance load and 3A for the

inductive load. The connection is in accordance with the following figure:

26

2. Requirement for the electronic transistor output:

The load connected to xLogic must have the following

characteristics:

* The maximum switch current cannot exceed 0.3A.

* When the switch is ON (Q=1), the maximum current is

0.3A.

Notes (PNP):

* The load connecting voltage must be ≤60VDC and it

must be DC.

* The “+” terminal of the output wiring must be

connected with the DC positive voltage, and it must

be connected with the “L+” terminal of the xLogic

power ，a load must be connected with the “-”

terminal of the DC negative voltage.

27

PR-E-AQ-VI(DC0..10V analog output).

PR-RS485

Actually, PR-RS485 is just a converter with photo isolation bringing out

3 wiring terminals(short circuited inner of such 3 terminals, so only one

channel RS485 bus is available) from RS485 port (2x8pin) of

CPU(PR-18/ELC-22/PR-24) for your easy connection with other devices.

If “RT1”, RT2” terminal are short connected, one 120R resistor will

be connected between A/+ and B/-

28

3.4.3 Communication port instructions:

PR-14,PR-18 ,PR-24 CPUs

1.Programming port/RS232 port (RS232 cable ,USB cable, ELC-MEMORY,

ELC-BATTERY,PRO-RS485) should be inserted in this port.

When the programming port should be used as the standard RS232 port

(D-shape 9 pin header) ,the RS232 cable is needed.Blow is show you the

pin definition of the pin:

29

1. Expansion port/RS485 (pin definition)

3------RS485 A

5------RS485 B

4------GND

6------GND

7------CANL

9------CANH

15------+5V

16------+5V

Communication between CPU and expansion module will use 4.7,9,15 pin.

PR-RS485 module is required when PR-18/PR-24 CPU communicate with the third party

devices via RS485 bus.

PIN functi

on

2 RXD

3 TXD

5 GND

others NULL

30

4.Quick reference manual

4.1 Special memory area:

SMB0
Always_On SM0.0 Always ON

First_Scan_On SM0.1 ON for the first scan cycle only

SMB1

Result_0 SM1.0
Set to 1 by the execution of certain instructions when

the operation result = 0

Overflow_Illegal SM1.1
Set to 1 by exec. of certain instructions on overflow

or illegal numeric value.

Neg_Result SM1.2
Set to 1 when a math operation produces a negative

result

Divide_By_0 SM1.3 Set to 1 when an attempt is made to divide by zero

Table_Overflow SM1.4
Set to 1 when the Add to Table instruction attempts

to overfill the table

Table_Empty SM1.5
Set to 1 when a LIFO or FIFO instruction attempts to

read from an empty table

Not_BCD SM1.6
Set to 1 when an attempt is made to convert a non-BCD

value to a binary value

Not_Hex SM1.7
Set to 1 when an ASCII value cannot be converted to

a valid hexadecimal value

4.2Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

4.3 High speed counter：

PR-24DC-DA-R/PR-24DC-DAI-RTA

I1.0 HC0

I1.1 HC1

I1.2 HC2

I1.3 HC3

Each high speed counter occupies an input point for receiving the pulse.No

reset, adjust the direction, start and other functions.The high speed

counter can only be used for recording number in the PLC.The number of

31

high speed counters of different PLC are different.PR-24DC-DA-R PLC and

PR-24DC-DAI-RTA PLC have four high speed counters.The input points of high

speed counters are I1.0,I1.1,I1.2 and I1.3. HCO,HC1,HC2,HC4 are used for

storing the values of high speed counters.

32

X Ladder direction for use

5.The detailed annotation of operation interface

5.1The main menu

5.1.1 File

New：New command is used to create a new project, you can use the shortcut

CTRL + N to create a new project.

Open：Open an existing project, VCW format files, which can be opened by the shortcut

CTRL + O. Opening the PWM is the PWM format file, you can use the shortcut CTRL +

P to open.

Save：Save the current edit program, you can use the shortcut CTRL + S

to save.

Save as：You can save the project and you can save the project with other

names which have been saved.

Save as binary：Save the project in a binary format.

Upload:Read the program from the PLC,ensure that communication is

normal.Program is read to a new project, can be saved and named.You can

use the shortcut CTRL + U to read.

Download：Write program to the PLC,Compiler success and then click the

download or use the shortcut CTRL + D to download the program.

Exit:Close the X Ladder software.

33

5.1.2 Edit

Undo：Returns to the last operation,you can send multiple “undo”

command.If you send out "open" and "off" or "save" or "compile" command,

"undo" buffer is cleared.Your next action is recorded as the beginning

of a new "undo" order.Can use the shortcut CTRL + Z to undo operation.

Redo:Contrary to the function of the undo.

Cut： Select an object, cut it, and place it in the WINDOWS clipboard

buffer.

Copy：Select the object, copy the operation, and the copy of the object

is placed in the WINDOWS clipboard buffer.

Paste：Stick the cut or copied object in the selected area.

Select all：Select all the text of the current cursor position, you can

use the shortcut key CTRL+A.

Find and replace：Is used to perform the "find", "replace" and "go"

operation on the program, local variable table, data block, symbol table

or state table, and can use the shortcut key CTRL+F.

5.1.3 View

STL：Display the program to STL instruction.

34

LAD: Display the program to LAD instruction.

Component：Components include data blocks, system blocks, program editing,

function symbols, variable symbols, cross reference and communication

settings, will be detailed description of the function of the module in

the instruction tree.

Symbolic addressing：After the start symbol editing function, it will

display the symbol of the annotation.

Toolbar:The toolbar of the contents are as follows

You can choose to use the tools, the default is full.

Floating window：Window that can be moved in the operating interface. Its

contents are as follows:

Status table, project management, information output and debugging

information window can be moved.

35

5.1.4 PLC

RUN:Make RUN in PLC mode, running the program in PLC, if you use the software to

open RUN mode, you need to ensure the normal communication between software and PLC.

Stop：Make STOP in PLC mode, to stop the program in the PLC. If you use the software

to make STOP into the PLC mode, you need to ensure the normal communication between

software and PLC.

Compile:Compile the program of the current page.

Compile all:Compile all project components (program block, data block and system

block).

Clear：Clear all the data in the PLC, only offline can clear the data from the PLC.

Information：The information view of PLC, we can only see in the connection state.

Read PLC date/time:In the connection mode, read the PLC internal date time.

Write PC time to PLC：In the connection mode, the PC time is written to the PLC.

Type：Can choose the type of PLC.

MODBUS address query：The corresponding MODBUS address of the variable.

36

5.1.5 Debug

Connect：Display PLC data status in the program editor window.

Disconnect：No longer monitor the current value of the PLC data. In offline

state does not represent the state of STOP in PLC, if you want to make

STOP in PLC state, you can modify the state of PLC in the connection state,

in offline state can not be modified.

5.1.6 Help

About: the information of the software.

Choose Language:Can choose Chinese or English

Call help file：Can call help file.

37

5.2 toolbar

5.2.1 New：New command is used to create a new project, you can use the

shortcut CTRL + N to create a new project.

5.2.2 Open：Open an existing project, VCW format files, which can be opened by

the shortcut CTRL + O. Opening the PWM is the PWM format file, can use the shortcut

CTRL + P to open.

5.2.3 Save：Save the current edit program, you can use the shortcut CTRL

+ S to save.

5.2.4 Undo：Returns to the last operation,you can send multiple “undo”

command.If you send out "open" and "off" or "save" or "compile" command,

"undo" buffer is cleared.Your next action is recorded as the beginning

of a new "undo" order.Can use the shortcut CTRL + Z to undo operation.

5.2.5 Redo:Contrary to the function of the undo.

5.2.6 Cut:Select an object, cut it, and place it in the WINDOWS clipboard

buffer.

5.2.7 Copy:Select the object, copy the operation, and the copy of the

object is placed in the WINDOWS clipboard buffer.

5.2.8 Paste：Stick the cut or copied object in the selected area.

5.2.9 Symbolic addressing：After the start symbol editing function, it

will display the symbol of the annotation.

5.2.10 Compile:Compile the program of the current page.

5.2.11 Compile all:Compile all project components (program block, data

block and system block).

5.2.12Upload:Read the program from the PLC,ensure that communication is

normal.Program is read to a new project, can be saved and named.You can

use the shortcut CTRL + U to read.

5.2.13 Download:Write program to the PLC,Compiler success and then click

the download or use the shortcut CTRL + D to download the program.

38

5.2.14 Connect：Display PLC data status in the program editor window.

5.2.15 Disconnect：No longer monitor the current value of the PLC data.

In offline state does not represent the state of STOP in PLC, if you want

to make STOP in PLC state, you can modify the state of PLC in the connection

state, in offline state can not be modified.

5.2.16 Run:Run instructions in the main menu.

5.2.17 Stop:Stop instructions in the main menu

5.2.18 Erase:Select the instruction that has been written, click erase,

delete instruction.

5.2.19 Choose：When the selection is lit, it indicates that the current

location area can be selected, copied, cut and pasted. Selection is gray,

the current location of the selected operation can not be carried out.

5.2.20 Normally open contacts:Click to select the normally open contact,

in the program editing area will appear normally open contact which is

undefined, you can click the mark to enter the address.

5.2.21 Normally closed contacts:Click to select the normally closed

contact, in the program editing area will appear normally closed contact

which is undefined, you can click the mark to enter the address.

5.2.22 Rising edge contact:Click to select the rising edge of the contact,

enable input will lead to a scan cycle .

5.2.23 Falling edge contact:Click to select the falling edge contact ,

when the enable input is disconnected, it will lead to a scan cycle.

5.2.24 Output coil：The output coil must be at the end of each line.Write

the new value of the output bit to the output image register.

5.2.25 Function block：Click the function block, the interface is as

follows.

39

Enter the required function block instruction in the dialog box, letters

are capital.

5.2.26 Level:The instruction and function blocks are connected in series.

5.2.27 Vertical line:The instruction and function blocks are connected

in parallel.

5.2.28 Take back:When the enable input, the output is 0, when the enable

to disconnect, the output is 1.

40

5.3 Instruction tree

41

5.3.1 Project

You can choose the type of PLC,When PLC type is determined, the PLC parameter will

appear below.

5.3.2 Data block

Data blocks contain DAT-0 and DAT-1, you can right-click to insert new data blocks

for programmers to use .The contents of the data block are as follows:

In the data block, you can set the address, data type, data value, and annotation .The

contents of the data blocks are written to PLC after a permanent save, unless a new

program is written in PLC.The content in the block of data is written to the PLC

and it will be permanently preserved, unless a new program is written in PLC.

42

5.3.3 System block

Double click the system block, pop the following interface:

RS232 / RS485 interface: All ports are using MODBUS communication

protocol.You can set four ports, They are : port 0, port 1, port 2 and

port 3.

You can set the station number, baud rate, data bit, stop bit, parity,

timeout and frame interval time.

43

CAN interface

PLC supports CAN communication.CAN communication will be introduced in the

communication block.

44

Password interface

Password has 3 levels.

Level 1-Full:All PLC functions are available without restriction.

Level 2-Minium：You have to enter a password before using each function

of PLC.

Level 3-Disallow Upload：You can't upload the PLC program.Then you have

to enter a password before using each function of PLC.

And if you forget the password：

1.Power off PLC

2.Keep pressing the UP key and ESC key, then power up to PLC.

3. When “Are you sure turn to FBD”appears,you press the OK key.

4.Repeat these steps,you turn the PLC to Ladder diagram.PLC program is

empty.You can download a new program.

The length of the password is 1 to 16 bits.

45

Retentive Ranges interface

By default, all M, T, V, and C storage areas are set to remain.You can

redefine the scope and set some storage areas to non - hold.You can define

the six holding range, select the storage area you want to keep.You can

define the address holding range in the following storage areas. As the

following: V, M, C, and T. For timers, only the memory timer (TONR) can

be kept, and only the current value of the timer and the counter can be

kept. Timer and counter bits are cleared .

All the variables in the retentive ranges are saved permanently.PLC can

hold up to 800 bytes.

46

Interrupt time parameter setting interface:

There are two time interrupt events.respectively, the time of the

interrupt event 1 and the time of the interrupt event 0. The interrupt

time you can set is 1 to 255 milliseconds.

47

Force table interface:

When PLC is converted from RUN mode to STOP mode, the selected output

points will be 1.

48

5.3.4 Program block

The program block contains three parts, namely, MAIN (main program), INT-1

(interrupt routine) and SBR-0 (subroutine). Check the interrupt program,

right click to add or delete interrupt program. Check the subroutine,

right click to add or delete subroutine. The main program can not be added

or deleted.

5.3.5 Function symbol

Double click the function symbol, the pop-up interface is as follows:

You can modify the symbols, addresses, and comments.

5.3.6 Variable symbol

Double click the variable symbol, the pop-up interface is as follows:

Symbol, address, data type, and comment can be set in variable symbol.

49

When the address and data types do not match, the address is red.

5.3.7 Status chart

Double click the status chart, the pop-up interface is as follows:

In the status chart, you can set the address, data type, value, and forced.

5.3.8 Cross reference

The cross reference displays the address, symbol, location, and context ，

the interface is as follows:

Using cross reference does not require compilation.

50

5.3.9 Communication

Set the PLC communication, the setting interface is as follows:

Serial Port：You can set the station number, port, baud rate, parity and

stop bit.

MODBUS: PLC doesn’t support the MODBUS TCP/IP function temporarily .

CAN KVASER 、CANPRO、CANALSYT -II are three kinds of CAN drivers, you can

choose the corresponding CAN driver to use.

51

5.3.10 Instructions

Instructions will be explained in detail in the instructions section.

52

5.3.11 The program editor

Local variable table：It will be described in detail in the PLC X Ladder

storage area and variable.

Program editing area:In the program editing area, the main program、

interrupt program and subroutine can be edited.

53

5.3.12 Status chart, information output

Status Chart: 5.3.7 chapter.

Information Output:The output information window keeps a list of errors

generated during compilation.When program modification is completed,

compile the program again.

54

5.4 Programming concepts

5.4.1 How the program works

The program is run by the loop, PLC reads and writes data continuously.When you

download the program to PLC and make PLC in the run mode, the PLC' s central

processing unit (CPU) executes the program in the following order:

A:PLC read input status.

B:The PLC program uses input values for logic control.

C:When the program is running and writes the results to the output image register.

D:At the end of the program, the output value of the output image register.

E: repeat the above steps.

PLC performs a series of tasks repeatedly. The cycle execution task is called the scan

cycle.PLC performs most or all of the following tasks during the scan cycle:

A: PLC read input status.

B:PLC executes the program's instructions, and stores the data in different memory

areas.

C: performs all communication requests.

D:PLC performs CPU self test diagnostic program.PLC ensure that the hardware,

program memory and all expansion modules are normal operation.

E:The values stored in the output image register are written to the actual output.

Attention: the execution of the scan cycle depends on the PLC that is set in the STOP

(stop) mode or the RUN (run) mode. In the RUN (run) mode, the program is executed;

in the STOP (stop) mode, the program is not executed.

5.4.2 Addressing overview

Identifying absolute and symbolic address

You can use absolute or symbol to identify the instructions in the program.Absolute

reference use memory area and bit or byte location to identify the address.symbolic

reference uses letters, numbers, and characters to identify addresses or values.

How to display the address of the program editor:

I0.0 The absolute address is made up of the memory area and the number

55

of addresses.

#INPUT1 # symbols in a local variable before

INPUT1 Global symbol name

??.? or ???? A question mark indicates an undefined address (which must be

defined before the program is compiled).

Global scope and local scope

The symbol value in the symbol table has a global scope, and the symbol value in the

local variable table has a local scope.

Global symbol

Global symbols can be used in the X Ladder program editor.

In the X Ladder program, you can use the global variable table to assign the global

symbol.

local variable

Local variables can be used in the X Ladder program editor.

Local variables are assigned in the local variable table of the respective POU, and the

scope is limited to the POU of the local variable. Each POU has a separate local

variable table.

Attention: if you use the same address name in the local and global variables table,

local variables are preferred.

Local variables use temporary L memory, and do not require the PLC program

memory space. The subroutines that use only the local variable parameters (or don't

use the parameters) are mobile subroutines, They can be used in more than one

program.If you want to use a parameter in a plurality of POU ,It is best to define it as

a global symbol in the global variable table, and do not define it as a local variable, or

you must assign each POU 's local variable table separately.Because local variables

use temporary memory, every time POU is called, be sure to initialize local variables

in POU.Global symbol table supports global symbol constant. Local variable table

does not support symbolic constants.

56

5.4.3 How to organize the program

Basic elements of a control program

CPU PR-X control program consists of the following program types:

main program The main body of the program is where you place the control

application instructions.The instructions in the main program are executed in

sequence, and each scan cycle is executed once.

subroutine Subroutine stored in a separate block, when the main program,

interrupt routine or another subroutine call subroutine, the subroutine will be

executed.

interrupt routine The interrupt routine is stored in a separate block, which is

executed only when the interrupt event occurs.

How to terminate POU

The compiler uses unconditional END, MEND, RET, or RETI to terminate each POU.If

you put the unconditional END, MEND, RET, or RETI into the program, the compiler

will return an error message.

subroutine

Subroutine is particularly useful when you want to perform a function repeatedly；

You just need to write a logic in the subroutine，then you can call the subroutine

every time when you need it in the main program.

Advantages:

1. Your program size becomes smaller.

2.Because you remove the code from the main program, the scan time will be

reduced.

Subroutine can be scanned only when it is called.The main program is constantly

scanned.

3.Subroutine is easy to be moved；You can select a function and copy it to another

program.You don't need or need a little repetitive operation.

Attention: V memory usage limits the portability of the subroutine.Because a

program's V memory address assignment may be in conflict with the assignment in

another program.Instead, the subroutine which only use local variables is easy to

57

move,because there is no need to worry about addressing conflicts.

interrupt routine

You can write an interrupt routine to handle some predefined interrupt events:The

interrupt routine is not called by the main program;When the interrupt event occurs,

it is called by the PLC operating system.Interrupt routine is best to use local variables.

You can use a local variable table to ensure that your interrupt routine uses only

temporary memory.

5.5 How to enter the ladder logic program

5.5.1 How to build a new project

Click ，Or click on the file drop-down menu Icon，Create a new project.

Open an existing project

Click the “file” icon, select “open” or “open the PWM file”.

5.5.2 Ladder logic element and its working principle

Ladder logic (LAD) is a graphical language which is similar to the electrical relay

diagram.When you write a program in LAD, you use graphical components and

arrange them into a logical network.The following component types are available for

use when you build a program:

contact the switch which power supply can pass through.When the normally

open contact logic is 1 and the normally closed contact logic is 0, the power supply

can pass through these contacts.

coil The coil represents the output.

Block Each block represents a function.

The network is composed of the above elements.The power supply from the left side

of the power rod flows through the closed contact to charge the coil or the block.

58

5.5.3 Network rules for series and parallel in LAD

Rules for placing contacts

Each network must begin with a contact.

The network cannot be terminated by contact.

Rules for placing coils

The network can not start with the coil；The coil is used to terminate the logical

network.A network may have a number of coils, and the coils are located on a

parallel branch of the network.Could not be connected in series with more than one

coil in the network

Rules for placing blocks

If the block has ENO, the enable bit can be extended to the out of block;This means

that you can place more instructions behind the block.In the network, you can

connect in series with a number of boxes with ENO.If there is no ENO in the box, no

instruction can be placed on the following.

Network size limit

Cell is the area which is placed instruction.In the network, a single network can

extend 32 cells Vertically or 32 cells horizontally.

5.5.4 How to input commands in LAD

Line

You can use horizontal and vertical lines to connect elements to finish the network.

Double click the instruction tree

1.Place the cursor in the position you want to edit in the program editor

window.Click the mouse, there will be a selection box.

2.Select the required instruction, double click it.

59

Instruction will appear in the selected editing area.

Use the toolbar button or function key

1.Place the cursor in the position you want to edit in the program editor window.

Click the mouse, there will be a selection box.

1.Select the required button in the toolbar

Or use the functional keys (F4= contacts, F6= coil, F9= box).

2.The second step is over, there will be a drop-down list.Find the needed instructions

in the list.Double click the instruction or use the ENTER key to enter the instruction.

60

5.5.5 How to enter the address in LAD

When you enter a command in the LAD, the instruction contains question marks.The

question mark indicates that the parameter is not assigned.You can assign values to

the parameters of the element when you enter the element.If the parameter is not

assigned, the program will not be properly compiled.

To specify a symbolic address, you must perform the following simple steps:

1.Enter a symbol or variable name in the address area of the instruction.

2. if it is a global symbol, the symbol table / global variable table is used for

Specifying a symbol name to the memory address.

Attention:you can use local variable table at the top of the program editor

window.Input symbol name in the "symbol" column.Because the compiler will

automatically specify the L memory address, you do not have to enter the address

for the local variable. You can drag the edge of the table to minimize the size of the

local variable table.

5.5.6 How to edit program elements in LAD

Cut, copy, paste, or delete multiple networks

By dragging the mouse or holding down the shift key with the mouse to select the

adjacent networks, you can choose a number of adjacent networks for cutting,

copying, pasting or deleting options.

First of all ,you should select a project, and then you can use the copy function.The

contents of the copy are placed in the Windows clipboard buffer.

You can choose the following objectives in the project:

1. Program text or data domain

2.Instructions in the LAD, FBD, and STL editors

3. Single network

4. Multiple adjacent networks

5. All networks

6.Symbol table, row and column of the symbol table

7.State table, row and column of the state table

61

Edit cells, instructions, addresses, and networks

1.Select an empty cell, you can use the right key to select the operations as follows:

2.Select an instruction, you can use the right key to select the operations as follows:

62

3.You can cut and paste elements and rows, delete rows or columns.

Delete element:

You can use the DELETE or BACKSPACE key to delete the cells；You can select the

elements that need to be deleted, use the right key to select the “delete” function

component.

Attention: in order to select the vertical line that needs to be deleted, you should use

the cursor to select the vertical line.

63

5.5.7 How to use find / replace

1.Select Edit > Find , Edit > replace

2. Use the shortcut key CTRL+F to start the search function.

How to use search and replace function

Search function

1.Enter the string you want to search in the “search content” field.

2.You can use the “Find up” and “Find down” functions.

Replacement function

1.Enter the string you want to search in the “search content” field.

2.Enter the string you want to replace in the “replacement content” field.

3.To find the next string, click the “Next” button.

4.If you want to replace the string, click "replace" .If you want to replace all of the

characters, click “Replace All”.

Where to use

You can use the "find" and "replace" in the program editor window.

How them works

1.The "find" function allows you to search strings, such as the operation of network

number, title or instruction mnemonic.（"Find" function does not search network

comments, It just search the network title.）

2."Replace" function allows you to replace the specified string.

64

5.5.8 How to display errors in LAD in the program editor

Red words display errors.

Attention: when you replace the invalid value or symbol with a valid value, the font is

automatically changed to the default font color.

5.5.9 How to compile in LAD

You can use the toolbar button or the “PLC” menu to compile.

"Compile" Allows you to compile a single element of the project.When you select

"compile", the current window is compiled and the other windows are not compiled.

"All compile" Compiles the program editor, system block, and data block.When

you use the "All compile" command, all windows are compiled.

Use the output window to resolve the error

When you compile a program, the output window lists all the errors about the

program.Errors include location (network, row and column)and error types.

65

5.5.10 How to save the project

You can use the "save" button on the toolbar to save your project, or use the

shortcut key CTRL+S to save your project.

"Save" allows you to save all changes quickly in your project.

“Save as” allows you to change the name of the current project and the location of

the directory .

5.6 How to set up a communication and download program

5.6.1 Communication settings

How to build a communication between the personal computer and the PLC in the

Xladder. It depends on the hardware that you installed.Use the communication cable

to connect PLC and the computer, set up the correct communication parameters in

the Xladder and then PLC and computer can communicate.

You can set up the communication or edit the communication settings at any time.

Steps to establish a communication:

1. Use the communication cable to connect PLC and the computer.

Default parameters:

Station Number:0

Port:Select the correct port

Baud rate:9600 bps

Check:EVEN

Stop bit: 1 bit

66

2.Select the PLC model: ensure that the PLC model in the software is consistent with

the actual PLC model.

67

3.In this PLC, you can choose 5 kinds of communication.Right click to open the

“communication”, the interface is as follows:

5.6.2 Download program

If XLadder and PLC communicate successfully,you can download the program to

PLC.Steps are as follows:

Attention: the new program will cover the old program.

1.Before the program is downloaded to PLC, the program needs to be

compiled .

2.After the success of the compiler, click the "download" button in the toolbar,

or select File > download.

The interface is as follows:

Click Yes, the software will automatically download the program block, the data block

and the CPU configurations to the PLC.

68

3.When the program is downloaded successfully, the interface is as follows:

There are three options,you can chose one of them.

5.When you choose “yes” or “no”, you can click on the “connection” to monitor

the program. When you choose “cancel”, PLC is stopped.You can click on the “run”

button ，then click on the “connection” to monitor the program.

6.If the type of PLC set in the software is not consistent with the PLC type of the

actual connection,the software will display a warning message.

7.You can double click on the project of the project manager to modify the PLC

model.

8.Click the “download” button to download the program again.

9.If the program downloads successfully, you can convert the PLC from the STOP

mode to the RUN mode to run the program.

5.6.3 How to correct compilation errors and download errors

The output window automatically displays program information and error messages

at any time when you compile a program or download a program.

The information usually includes the error of the network, the column and row

position and the error code and instructions.

69

If you have closed the output window, select View > floating window > output

window from the menu bar to display the output window again.

5.7 How to monitor and debug the program

After the program is downloaded, you can use the "debug" toolbar diagnostic

function.

Debug Toolbar：

You can find the toolbar instructions in the “detailed annotation of operation

interface”.

What is "state monitoring"?

State monitoring shows the current value of the PLC data and the information of the

current state.You can monitor, read, write, and enforce PLC data values by using the

status table.When the program runs, there are two ways to view the PLC data

dynamics.

Status table monitoring Displays the data status in the table: you can specify

address, data type, value, and forced.

Program status monitoring Displays data status in the program editor window:

the current PLC data value is displayed on the STL statement or LAD graph.

Program status monitor window and status table monitor window can be run

70

simultaneously:

PLC data written or forced in the state table window will be applied to the program

status monitor window.

The conditions of Viewing data status

1.X Ladder and PLC communicate successfully.

2.Download the program to the PLC successfully.

3.To view the continuous changes of the PLC data state , the PLC must be located in

the RUN mode.

4.If the program that you monitor is not implemented, there will not be a state

display.

Attention:

If the program downloads successfully, you have to convert the PLC from the STOP

mode to the RUN mode to run the program.Because in STOP mode, you will not be

able to see the expected results of the program logic operation.

How to view data status

In RUN mode, click on the connection to monitor the program. Write the

address of the data that you want to view in the state table , the status table will

show its current value.

The color of execution status:

Contact: when the contact is switched on, the instruction will change the color.

Coil: when the output is switched on, the instruction will change the color .

71

State values are collected in a continuous manner or snapshot manner

Continuity

1.Open the program editor window and start the “program status monitoring".When

PLC is in the RUN mode, you can view the continuous state of the program data.

2.Open the status table window and start the “status table monitoring".When PLC is

in the RUN mode, you can view the continuous state of the program data.

Snapshot

The PLC is converted to STOP mode,you can collect a single status update.When PLC

is in the STOP mode, you can use the "multiple scan" and "single scan" functions.

PLC RUN / STOP mode

Use the following methods to change the PLC operation mode:

1.Click the "run" button to execute the RUN mode.Or click the "stop" button to

execute the STOP mode.

2.Select the PLC > run menu command to execute the RUN mode，Or select PLC >

stop menu command to execute the STOP mode.

3.Insert a STOP instruction in the program.

Attention：

When the PLC is located in STOP mode, you can perform the following operations:

1.Use the status table or the program status monitoring window to see the current

value of the data.

2.Perform a limited number of scans.

When PLC is in RUN mode, you can't use the "first scan" or "multiple scan" function.

When PLC is in RUN mode,You can write and force data in the status table. You can

also perform the following operations:

1.Use status table to view the continuous state of the program data.

2. Use the program status monitoring window to view the continuous state of the

program data.

72

Mandatory and cancel the mandatory

Forced Enter the address and its value that you want to force in the state table.

Then select the mandatory function.Before canceling the mandatory, the mandatory

function has been effective.

"Mandatory" function covers "read immediately " and "write immediately" functions.

I/O points can be forced, and other storage areas can not be forced.

Cancel the mandatory Select “unforced” in the status table to cancel mandatory.

How to perform a limited number of scans

Single scan：

1.PLC must be set to STOP mode.

2.Select PLC> single scan from the menu bar.

Multiple scans：

1.PLC must be set to STOP mode.

2.Select PLC> Multiple scans from the menu bar.

Dialog box appears as follows：

3.Enter the value of the number of scans, click “OK”.

73

5.8 PLC operation and options

Elements of the control program

Ladder Program

In the LAD program, the basic elements of the logic are represented by contacts, coils,

and boxes.

The input is represented by a symbol called a contact.Contact is divided into normally

open contact and normally closed contact.

Normally open contact: a contact that is open in nature.

Normally closed contact: a contact that is closed in nature.

The output is represented by a symbol called a coil.

The blocks are function blocks with various functions.The blocks can make

programming easier.

STL program

The STL program elements are represented by instructions.Ladder diagram and

instructions are as follows:

System blocks configuration

Instructions：The detailed annotation of operation interface--->System blocks

74

6.X Ladder instructions descriptions

6.1 Bit logic

6.1.1 Normally open and normally closed

Input / output Operand Data type

Bit（LAD、STL） I, Q, M, SM, T, C, V, S, L Boolean

Input（FBD） I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

Output（FBD） I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

75

When the bit is equal to 1, the normally open contact

is closed, and the normally closed contact is

disconnected.

When the bit is equal to 0, the normally open contact

is disconnected , and the normally closed contact is

closed .

In STL, the normally open contact is represented by

“LD”, "And" and "Or" instructions.

In STL, normally closed contacts are represented by

"NOT", "NOT AND" and "NOT OR" instructions.

Example:

76

6.1.2 Normally open immediate and normally closed immediate.

When PLC executes the instruction, the immediate instruction

obtains the actual input value, but the PLC does not update

the process image register.

The immediate contact update does not depend on the PLC

scan cycle; it will be updated immediately.

When the actual input point is 1, normally open immediate is

closed.

When the actual input point is 0, normally closed immediate is

closed.

In LAD,normally open immediate and normally closed

immediate instructions are represented by contacts.

Forcing function can’t be used for immediate input instructions.

6.1.3 NOT Reverse instruction

The functions of "NOT instruction" are as follows:

When the input is 0, the output is 1.

When the input is 1, the output is 0.

In LAD, the NOT instruction is represented by a contact.

Example:

77

6.1.4 Rising edge and falling edge

Input / output Operand Data type

Input （FBD） I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

output（FBD） I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

When left logic is converted from 0 to 1,Rising edge contact

conduction time is a scan cycle.

When left logic is converted from 1 to 0,Falling edge contact

conduction time is a scan cycle.

In LAD, the rising edge and the falling edge are represented

by the contacts.

Example:

78

6.1.5 Output

Input / output Operand Data type

Bit I, Q, M, SM, T, C, V, S, L Boolean

Input （LAD） Enable bit Boolean

Input (FBD) I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

The output instruction writes the new value of output bit to

process image register.

In LAD and FBD, when the output instruction is executed, the

PLC will open or close the output bit in the process image

register.

Example：

6.1.6 Output immediate

Input / output Operand Data type

Bit Q Boolean

Input（LAD） Enable bit Boolean

Input（FBD） I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

79

The new value generated by executing the immediate output

instruction is written to the actual output and the

corresponding process image register.

6.1.7 Set and reset

Input / output Operand Data type

Bit I, Q, M, SM, T, C, V, S, L Boolean

N VB, IB, QB, MB, SMB, SB, LB, AC, constant, *VD, *AC, *LD Byte

"Set” instruction can make a bit or a series of bits be 1.

"Reset” instruction can make a bit or a series of bits be 0.

The value of N is between 1 and 255.

The “reset” instruction can reset the bits of the timer and

counter, and can clear the current value of the timer and

counter.

Example:

80

6.1.8 Set immediate and reset immediate

Input / output Operand Data type
Bit Q Boolean
N VB, IB, QB, MB, SMB, SB, LB, AC, constant, *VD, *AC, *LD Byte

“Set immediate” can set many of points immediately.

“Reset immediate” can reset many of points immediately.

The value of N is between 1 and 128.

"I" means"reference immediately"；The new value generated by

executing the instruction is written to the actual output and the

corresponding process image register.

6.1.9 SR instruction

Input / output Operand Data type

S1, R (LAD) Enable bit Boolean

S1, R (FBD) I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

OUT (LAD) Enable bit Boolean

OUT (FBD) I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

xxx I, Q, M, V, S Boolean

Bistable trigger is a latch.When both R and S1 are equal to 1, the

output is 1.

The truth table of the "SR" instruction is as follows:

Instruction S1 R OUT

SR 0 0 Previous state

0 1 0

1 0 1

1 1 1

81

Example：

6.1.10 RS instruction

Input / output Operand Data type

S, R1 (LAD) Enable bit Boolean

S, R1 (FBD) I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

OUT (LAD) Enable bit Boolean

OUT (FBD) I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

xxx I, Q, M, V, S Boolean

Bistable trigger is a latch.When both R1 and S are equal to 1, the

output is 0.

The truth table of the "RS" instruction is as follows:

Instruction S R1 OUT

RS 0 0 Previous state

0 1 0

1 0 1

1 1 0

82

Example：

6.1.11 NOP instruction

NOP instruction is invalid for user program execution.Can not

use NOP instruction in FBD mode.The value of N is between 0

and 255.

83

6.2 Clock instruction

6.2.1 Read and set the real time clock

Input / output Operand Data type

T VB, IB, QB, MB, SMB, SB, LB, *VD, *AC, *LD Byte

TODR instruction reads the current time and date from the

hardware clock and load it into the time buffer of 7bytes

starting at the address T.

The TODW instruction writes the current time and date to

the hardware clock that is specified by the 7 bytes time

buffer at the beginning of the T .

All date and time values must be encoded in USINT format.Please refer to the

following table.

T byte direction byte data type

0 second USINT

1 minute USINT

2 hour USINT

3 date USINT

4 week USINT

5 month USINT

6 year USINT

84

6.3 Communication

6.3.1 Get port address

Input / output Operand Data type

ADDR VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC byte

PORT Constant（0 or1） byte

The GET -ADDR instruction reads the PLC port site from the

PORT，and put the value in the address specified in the ADDR.

6.3.2 Set port address

Input / output Operand Data type

ADDR VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *LD, *AC byte

PORT Constant（0 or 1） byte

SET- ADDR instruction set the PORT site to the value specified

in the ADDR.

The new address is not permanently saved.

Example:

85

6.4 Compare

6.4.1 Byte compare

Input / output Operand Data type

Input IB, QB, MB, SMB, VB, SB, LB, AC, constant, *VD, *LD, *AC byte

output（FBD） I, Q, M, SM, T, C, V, S, L, Boolean

Byte comparison instructions are used for comparing two

values：IN1 and IN2.

Comparison includes：IN2、IN1 >= IN2、IN1 <= IN2、IN1 > IN2、IN1

< IN2 or IN1 <> IN2.Byte comparison without symbol.

In LAD, the contact is open when the result is 1.

Attention：

The following conditions are serious errors .These errors will

cause the PLC to immediately stop the execution of the

program:

1.Enter illegal indirect address.

86

2.Enter the illegal real number

Example：

87

6.4.2 Integer comparison

Input / output Operand Data type

Input IW, QW, MW, SW, SMW, T, C, VW, LW, AIW, AC, constant, *VD, *LD,*AC Integer

output（FBD） I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

Comparison instructions are used for comparing two values：IN1

and IN2.

Comparison includes：IN1 = IN2、IN1 >= IN2、IN1 <= IN2、IN1 >

IN2、IN1 < IN2 or IN1 <> IN2.

Integer comparison with symbol (16#7FFF > 16#8000).

In LAD, when the comparison result is true, the contact

will be open.

In FBD, when the comparison result is true, the output

will be open.

Attention：The following conditions are serious errors .

These errors will cause the PLC to immediately stop the

execution of the program:

1.Enter illegal indirect address.

2.Enter the illegal real number.

Example:

88

6.4.3 Double integer comparison

Input / output Operand Data type

Input ID, QD, MD, SD, SMD, VD, LD, HC, AC, constant, *VD, *LD, *AC Double integer

output（FBD）I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

Comparison double integer instructions are used for

comparing two values：IN1 and IN2.

Comparison includes：IN1 = IN2、IN1 >= IN2、IN1 <= IN2、IN1 >

IN2、IN1 < IN2 or IN1 <> IN2.

Double integer comparison with symbol（16#7FFFFFFF >

16#80000000).

In LAD, when the comparison result is true, the contact

will be open.

In FBD, when the comparison result is true, the output

will be open.

Attention:The following conditions are serious errors .

These errors will cause the PLC to immediately stop the

execution of the program:

1.Enter illegal indirect address.

2.Enter the illegal real number.

Example:

89

6.4.4 Real number comparison

Input / output Operand Data type

Input ID, QD, MD, SD, SMD, VD, LD, AC, constant, *VD, *LD, *AC Real number

Output（FBD） I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

Comparison real number instructions are used for

comparing two values：IN1 and IN2.

Comparison includes：IN1 = IN2、IN1 >= IN2、IN1 <= IN2、IN1 >

IN2、IN1 < IN2 or IN1 <> IN2.Real number comparison with

symbol.

In LAD, when the comparison result is true, the contact

will be open.

In FBD, when the comparison result is true, the output

will be open.

Attention:The following conditions are serious errors .

These errors will cause the PLC to immediately stop the

execution of the program:

1.Enter illegal indirect address.

2.Enter the illegal real number.

Example:

90

6.4.5 String comparison

Input / output Operand Data type

IN1 VB, Constant string, LB, *VD, *LD, *AC String

IN2 VB, LB, *VD, *LD, *AC String

Output（FBD） I, Q, M, SM, T, C, V, S, L, Enable bit Boolean

Comparison string instructions are used for comparing

two ASCII strings: IN1=IN2，IN1<>IN2

In LAD, when the comparison result is true, the

comparison contact will be turned on.

The maximum length of a single constant string is 126

bytes.The maximum combined length of the two constant

string is 242 bytes.

Attention:The following conditions are serious errors .

These errors will cause the PLC to immediately stop the execution of the program:

1.Enter illegal indirect address.

2.Enter a string of more than 254 characters in length.

3.The start address and length of the string cannot be put into a specified memory

area.

ASCII constant string data type format:

String is a series of characters and the corresponding memory address, each

character is stored in a byte.The value of the first byte of a string is the length of the

string.If a constant string is entered directly into the program editor or data block,

the string must start and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String

length

Character

1

Character

2

Character

3

Character

4

Character

5

Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

91

6.5 Convert

6.5.1 Byte to integer

Input / output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC, constant, *AC, *VD, *LD Byte

OUT VW, IW, QW, MW, SW, SMW, LW, AQW, T, C, AC, *VD, *LD, *AC Integer

Byte to integer：The B-I instruction converts the byte value

to the integer value, and the result is inserted into the

variable specified by the OUT.Because the byte does not

have a symbol, the result does not have extension of the

symbol.

92

6.5.2 Integer to byte

Input / output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, constant, *VD, *LD, *AC Integer

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD Byte

Integer to byte:I-B Instruction converts the value of a

word to a byte value, and the result is inserted into the

variable specified by the OUT.The numerical range is 0

to 255. Other values will result in overflow and the

output will not be affected.

6.5.3 Integer to double integer

Input / output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, constant, *VD, *LD, *AC Integer

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double-integer

Integer to double integer：I- DI instruction converts the

value of integer to a double integer value, and the result

is inserted into the variable specified by the OUT.Sign is

extended.

6.5.4 Integer to string

Input / output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, constant, AC, *VD, *LD, *AC Integer

FMT VB, IB, QB, MB, SB, SMB, LB, constant, AC, *VD, *LD, *AC Byte

OUT VB, *VD, LB, *AC, *LD String

93

I-s instruction: the instruction converts the integer

word to a ASCII string of 8 characters in length.Format

(FMT) specifies the number of digits to the right of the

decimal point.The result string is written in 9

consecutive bytes from the OUT.

Illegal format（nnn > 5）

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String

length

Character

1

Character

2

Character

3

Character

4

Character

5

Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

The following is the definition of Operation number of ITS format:

MSB LSB

7 6 5 4 3 2 1 0

0 0 0 0 c n n n

C = comma (1) or decimal point (0)

nnn = The number of digits on the right side of the decimal point

The length of the output string is always 8 characters.nnn valid values

are from 0 to 5. If nnn=0, the value will be displayed without a decimal

point.When the value of NNN is greater than 5, the output is displayed

as a string of 8 ASCII space characters . C decides to use a comma or a

decimal point between integer and decimal .The 4 bits above the top of

the format must be zero.

94

6.5.5 Double integer to integer

Input/output Operand Data type
IN VD, ID, QD, MD, SD, SMD, LD, HC, AC, constant, *VD, *LD, *AC Double integer
OUT VW, IW, QW, MW, SW, SMW, LW, AQW, T, C, AC, *VD, *LD, *AC Integer

Double integer to integer： DI-I instruction converts the

value of double integer to a integer value, and the result is

inserted into the variable specified by the OUT.

Large value will result in overflow and the output will not

be affected.

6.5.6 Double integer to real number

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, AC, constant, *VD, *AC, *LD Double integer

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number

Double integer to real number：Instruction converts 32 bit

signed integer to 32 bit real number, and the result is

inserted into the variable specified by the OUT.

Example:

95

6.5.7 Double integer to string

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, constant, AC, *VD, *AC, *LD Double integer

FMT VB, IB, QB, MB, SB, SMB, LB, constant, AC, *VD, *LD, *AC Byte

OUT VB, *VD, LB, *AC, *LD String

Double integer to string：DI-s instruction: the instruction

converts the double integer to a ASCII string of 12 characters in

length.Format (FMT) specifies the number of digits to the right of

the decimal point.The output string is written in 13 consecutive

bytes from the OUT.

Illegal format（nnn > 5）

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String
length

Character

1

Character

2

Character

3

Character

4

Character

5
Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

The following is the definition of Operation number of ITS format:

MSB LSB

7 6 5 4 3 2 1 0

0 0 0 0 c n n n

C = comma (1) or decimal point (0)

nnn = The number of digits on the right side of the decimal point

The length of the output string is always 12characters.nnn valid values are from 0 to

5. If nnn=0, the value will be displayed without a decimal point.When the value of

96

NNN is greater than 5, the output is displayed as a string of 12 ASCII space characters.

C decides to use a comma or a decimal point between integer and decimal .The 4 bits

above the top of the format must be zero.

6.5.8 BCD to integer, integer to BCD conversion

Input/output Operand Data type

IN (LAD, FBD) VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, constant, *VD, *AC, *LD word

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC word

The BCD -I instruction converts the binary coded decimal

value to the integer value, and loads the result into the

variable specified by the OUT. “IN” BCD value range is 0 to

9999.Integer to BCD instruction converts the integer value

to binary coded decimal value and loads the result into

the variable specified by the OUT.The range of input

values is 0 to 9999.

Example:

97

6.5.9 ROUND

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double integer

The ROUND instruction converts the real number value to a

double integer value and the result is inserted into the

variable specified by the OUT. If the fractional part is equal to

or greater than 0.5, the integer part will be added to 1.

Example:

98

6.5.10 TRUNC

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD Double integer

TRUNC:Instruction converts 32 bits of real number to 32

bits integer,and the result is inserted into the variable

specified by the OUT.

Only the integer part of the real number is converted, and

the fractional part is discarded.

Example:

99

6.5.11 Real number to string

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, constant, AC, *VD, *LD, *AC Real number

FMT VB, IB, QB, MB, SB, SMB, LB, constant, AC, *VD, *LD, *AC Byte

OUT VB, LB, *VD, *AC, *LD String

R-S:Instruction converts the real number value to a ASCII

string.(FMT) format specifies the conversion accuracy of

the right of the decimal point.

The conversion result is placed in a string starting with

OUT.The output string length specified in the format can

be 3 to 15 characters.The format of real numbers used in

PLC is at most 7 digits.

Illegal format:

nnn > 5

ssss < 3

ssss < Required number of characters

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String
length

Character

1

Character

2

Character

3

Character

4

Character

5
Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

100

The following is the RTS instruction format (FMT) operand definition:

MSB LSB

7 6 5 4 3 2 1 0

s s s s c n n n

ssss = The length of the output string

c = Comma (1) or decimal point (0)

nnn = The number of characters of the right of the decimal point.

The length of the output string is specified by the SSSS field.0, 1, or 2 bytes are not

valid.The effective range of the NNN is from 0 to 5.NNN is equal to 0, the output

shows no decimal point.When the NNN value is greater than 5 or when the specified

output string length is too small to store the conversion value, the output string is

filled with ASCII space characters.The C bit specifies using a comma (C = 1) or a

decimal point (C = 0).

Prompt: output string according to the following rules

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with“-”.

3.The starting zero on the left of the decimal point is compressed.

4.The size of the output string must be 3 bytes larger than “nnn”

5.The value in the output string must be aligned to the right.

Example：

101

6.5.12 Integer to ASCII code

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC, constant, *VD, *LD, *AC Integer

FMT VB, IB, QB, MB, SB, SMB, LB, AC, constant, *VD, *LD, *AC byte

OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *LD, *AC byte

ITA:The instruction converts the integer word to ASCII

characters. (FMT) format specifies the conversion

accuracy of the right of the decimal point.

The conversion result is placed in the 8 successive bytes

from the OUT.ASCII character number is always 8

characters.

Error condition:

nnn > 5

The following is the ITA instruction format (FMT) operand definition:

The size of the output buffer is always 8 bytes.nnn = The number of characters of the

right of the decimal point.The effective range of the NNN is from 0 to 5.NNN is equal

to 0, the output shows no decimal point.When the NNN value is greater than 5 ,the

output string is filled with ASCII space characters.The C bit specifies using a comma (C

= 1) or a decimal point (C = 0).High 4 bits must be 0.

Prompt: The output according to the following rules

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with“-”.

3.The starting zero on the left of the decimal point is compressed.

4.The value in the output string must be aligned to the right.

102

Example:

Example:

As shown in Figure：The integer input is 123；nnn=1

The output value is as follows：

VB7 16#33 3

VB6 16#2E .

VB5 16#32 2

VB4 16#31 1

VB3 16#20 Space

VB2 16#20 Space

VB1 16#20 Space

VB0 16#20 Space

103

6.5.13 Double integer to ASCII code

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, constant, AC, *VD, *AC, *LD Double integer

FMT VB, IB, QB, MB, SB, SMB, LB, AC, constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *LD, *AC Byte

DTA：The instruction converts the double integer to ASCII

characters. (FMT) format specifies the conversion

accuracy of the right of the decimal point.

The conversion result is placed in the 12 successive bytes

from the OUT.

Error conditions:

FMT high four bits value is greater than 0

nnn > 5

The following is the DTA instruction format (FMT) operand definition:

The size of the output buffer is always 12 bytes.nnn = The number of characters of

the right of the decimal point.The effective range of the NNN is from 0 to 5.NNN is

equal to 0, the output shows no decimal point.When the NNN value is greater than

5 ,the output string is filled with ASCII space characters.The C bit specifies using a

comma (C = 1) or a decimal point (C = 0).High 4 bits must be 0.

Prompt: The output according to the following rules

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with“-”.

3.The starting zero on the left of the decimal point is compressed.

4.The value in the output string must be aligned to the right.

Example:

104

6.5.14 Real number to ASCII code

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, constant, *VD, *LD, *AC Real number

FMT VB, IB, QB, MB, SB, SMB, LB, AC, constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *LD, *AC Byte

RTA:The instruction converts the real number to ASCII

characters. (FMT) format specifies the conversion

accuracy of the right of the decimal point.

The conversion result is placed in the output buffer from

the OUT.The length of the output buffer is 3 to 15

characters.

Error conditions:

nnn > 5

ssss < 3

ssss < Number of characters in OUT

The following is the RTA instruction format (FMT) operand definition:

The length of the output string is specified by the SSSS field.0, 1, or 2 bytes are not

valid.The effective range of the NNN is from 0 to 5.NNN is equal to 0, the output

shows no decimal point.When the NNN value is greater than 5 or when the specified

output string length is too small to store the conversion value, the output string is

filled with ASCII space characters.The C bit specifies using a comma (C = 1) or a

decimal point (C = 0).

The output according to the following rules:

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with“-”.

3.The starting zero on the left of the decimal point is compressed.

4. The number of characters of the right of the decimal point is equal to the value of “nnn”.

105

5.The size of the output string must be 3 bytes larger than “nnn”.

6.The value in the output string must be aligned to the right.

Example:

Example:

Convert the real number 123.45 into ASCII code.The output is 6 bytes .

The output:

VB0 VB1 VB2 VB3 VB4 VB5

16#31 16#32 16#33 16#2E 16#34 16#35

1 2 3 . 4 5

106

6.5.15 ATH&HTA

Input/output Operand Data type

IN,OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *AC, *LD Byte

LEN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

ASCII to HEX Instruction converts the ASCII characters

starting with“IN”to the hexadecimal digits starting

with the“out”.The maximum length of the ASCII string

is 255 characters.

HEX to ASCII Instruction converts the hexadecimal digits

starting with“IN”to the ASCII characters starting with

the“out”.

The length of conversion hexadecimal digits is specified

by the LEN.The maximum length is 255.

Valid ASCII input character:

Numbers 0 to 9 and capital letters A to F.

ASCII Codes: 30 to 39 and 41 to 46.

Error condition: Illegal ASCII code

Example:

107

6.5.16 String to integer

Input/output Operand Data type

IN VB,constant string, LB, *VD, *LD, *AC String

INDX VB, IB, QB, MB, SB, SMB, LB,constant, AC,*VD, *LD, *AC Byte

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AQW, AC, *VD, *LD, *AC Integer

S-I：The instruction converts the string value“IN” to the

integer value stored in the OUT, starting with the offset

INDX location.

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String
length

Character

1

Character

2

Character

3

Character

4

Character

5
Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

INDX value is typically set to 1,starting conversion from the first character of the

string.INDX value can be set to other values.This method can be used when the input

string contains characters that are not required to be converted.For example, if the

input string is“Temperature: 77.8”,you can set INDX value 13 to skip the

characters "Temperature:".

When the end of the string is reached or when the first invalid character is found, the

conversion is terminated.Invalid character is any character other than number (0-9).

108

The following table shows examples of valid and invalid integer input strings:

Example:

Enter the string "12@45”.The S-I instruction converts the string from the first

character, and the result is an integer 12.

109

6.5.17 String to double integer

Input/output Operand Data type

IN VB,constant string, LB, *VD, *LD, *AC String

INDX VB, IB, QB, MB, SB, SMB, LB,constant, AC,*VD, *LD, *AC Byte

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double integer

S- DI:The instruction converts the string value“IN” to the

double integer value stored in the“OUT”, starting with the

offset INDX location.

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String
length

Character

1

Character

2

Character

3

Character

4

Character

5
Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

INDX value is typically set to 1,starting conversion from the first character of the

string.INDX value can be set to other values.This method can be used when the input

string contains characters that are not required to be converted.For example, if the

input string is“Temperature: 77.8”,you can set INDX value 13 to skip the

characters "Temperature:".

When the end of the string is reached or when the first invalid character is found, the

conversion is terminated.Invalid character is any character other than number (0-9).

110

The following table shows examples of valid and invalid integer input strings:

Example:

Enter the string "123B5”.The S- DI instruction converts the string from

the first character, and the result is a double integer 123.

Because B is an invalid character, the characters after B are no longer

converted.

111

6.5.18 String to real number

Input/output Operand Data type

IN VB,constant string, LB, *VD, *LD, *AC String

INDX VB, IB, QB, MB, SB, SMB, LB,Constant, AC,*VD, *LD, *AC Byte

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number

S-R:The instruction converts the string value“IN” to the

real number value stored in the“OUT”, starting with

the offset INDX location.

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String
length

Character

1

Character

2

Character

3

Character

4

Character

5
Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

INDX value is typically set to 1,starting conversion from the first character of the

string.INDX value can be set to other values.This method can be used when the input

string contains characters that are not required to be converted.For example, if the

input string is“Temperature: 77.8”,you can set INDX value 13 to skip the

characters "Temperature:".

When the end of the string is reached or when the first invalid character

is found, the conversion is terminated.Invalid character is any character

other than number (0-9).

112

This instruction does not generate overflow errors, but only converts the

string to real number and then terminates the conversion.

For example, the string "1.234E6" will be converted to a real number value

“1.234”without generating an error message.

The following table shows examples of valid and invalid integer input strings:

Example:

Input string “2.345” and output the real number 2.345

113

6.5.19 DECO

Input/output Operand Data type
IN VB, IB, QB, MB, SMB, LB, SB, AC, constant, *VD, *LD, *AC Byte
OUT VW, IW, QW, MW, SMW, LW, SW, AQW, T, C, AC, *VD, *AC, *LD word

The low four bits value of input byte is n, the nth bit of the

output word is equal to 1.

The other bits of the output word are set to 0.

Example:

The low four bits value of VB0 is 15, the 15th bit of the VW10 is equal to 1.

The other bits of the VW10 are set to 0.

114

6.5.20 ENCO

Input/output Operand Data type

IN VW, IW, QW, MW, SMW, LW, SW, AIW, T, C, AC, constant, *VD, *AC, *LD Word

OUT VB, IB, QB, MB, SMB, LB, SB, AC, *VD, *LD, *AC Byte

ENCO: The nth bit of the input word is equal to 1.The low

four bits value of output byte is n.

Example：

As shown in the above figure：The 15th bit of the input word vw0 is equal to 1.The

low four bits value of output byte vb10 is 15.

115

6.5.21 Seven segment code

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte

OUT VB, IB, QB, MB, SMB, LB, AC, *VD, *AC, SB, *LD Byte

SEG:The instruction generates the bits of the seven

segment.

The low four bits value of input byte is converted.

Seven segment code table:

Example:

Analysis:

The low four bits value of VB0 is 8.The value of the output byte VB1 is 16#7F.The

result of converting VB1 to binary is 2# 0111 1111 .

116

6.6 Counter

6.6.1 CTU

Input/output Operand Data type
C xxx Constant(C0—C255) Word
CU (LAD) Enable bit Boolean
CU (FBD) I, Q, M, SM, T, C, V, S, L, Enable bit Boolean
R (LAD) Enable bit Boolean
R (FBD) I, Q, M, SM, T, C, V, S, L,Enable bit Boolean
PV VW, IW, QW, MW, SMW, LW, AIW, AC, T, C,constant, *VD, *AC, *LD, SW Integer

CU bit gets a high level and the current value of the

counter plus 1.When the current value is greater than or

equal to the preset value, the counter bit opens.When R

gets a high level, the counter is restored.The maximum

value of the counter is 32767.

Counter range：C xxx=C0 ~ C255

The counter number of each counter is different.

Example:

117

6.6.2 CTD

Input/output Operand Data type

Cxxx Constant(C0—C255) Word

CD (LAD) Enable bit Boolean

CD (FBD) I, Q, M, SM, T, C, V, S, L,Enable bit Boolean

LD (LAD) Enable bit Boolean

LD (FBD) I, Q, M, SM, T, C, V, S, L,Enable bit Boolean

PV VW, IW, QW, MW, LW, SMW, AC, T, C, AIW,constant, *VD, *AC, *LD, SW Integer

The bit of CD is converted from 0 to 1 and the current

value minus 1. When the current value is equal to 0, the

counter is opened and counter stops count .When the LD

bit is equal to 1,counter bit is restored and the preset

value is loaded into the current value.

Counter range：C xxx=C0~C255

Attention: The counter number of each counter is different.

Example:

118

6.6.3 CTUD

Input/output Operand Data type

C xxx Constant(C0—C255) word

CU, CD (LAD) Enable bit Boolean

CU, CD (FBD) I, Q, M, SM, T, C, V, S, L,Enable bit Boolean

R (LAD) Enable bit Boolean

R (FBD) I, Q, M, SM, T, C, V, S, L,Enable bit Boolean

PV VW, IW, QW, MW, LW, SMW, AC, T, C, AIW,constant, *VD, *AC, *LD, SW Integer

CU bit gets a high level and the current value of the

counter plus 1.The bit of CD is converted from 0 to 1 and

the current value minus 1. When the current value is

greater than or equal to the preset value, the counter bit

opens.The maximum value of the counter is 32767, and

the minimum value is -32768.When R gets a high level, the

counter is restored.

Counter range：C xxx=C0~C255

Attention: The counter number of each counter is different.

Example：

119

6.7 Floating point calculation

6.7.1 ADD-R&SUB-R

Input/output Operand Data type

IN1, IN2 VD, ID, QD, MD, SD, SMD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number

ADD-R:Adding N1 and N2, the result is put into the

output buffer.

SUB-R:N1 minus N2, the result is put into the output

buffer.

N1, N2, and OUT are 32 bits of real numbers.

In LAD and FBD： IN1 + IN2 = OUT

IN1 - IN2 = OUT

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

SM1.1 is used to indicate overflow errors and illegal values.

120

Example:

121

6.7.2 MUL - R&DIV - R

Input/output Operand Data type

IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

MUL - R:IN1 multiplied by IN2, the result is put into the

output buffer.

DIV - R:IN1 divided by IN2,the result is put into the output

buffer.

IN1, IN2, and OUT are 32 bits of real numbers.

In LAD and FBD：IN1 * IN2 = OUT

IN1 / IN2 = OUT

error conditions:

SM1.1 Overflow

SM1.3 The divisor is 0

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

SM1.3 The divisor is 0

122

Example:

6.7.3 SQRT

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

SQRT:Enter a 32 bits real number(IN).Take “IN” square

root and output 32 bits real number.

Formula:

OUTIN =

error conditions:

SM1.1 Overflow

Special memory bits:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

SM1.1 is used for indicating overflow errors and illegal values.

123

6.7.4 SIN

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

SIN：Perform trigonometric operations on the input

radian value and put the result into OUT.You can use the

angle value multiplied by 1.745329E-2 to get the value of

the radian.The value of the input “IN” is radian .

SM1.1 is used for indicating overflow errors and illegal

values.

error conditions:

SM1.1 Overflow

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

124

6.7.5 COS

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

COS:Perform trigonometric operations on the input

radian value and put the result into OUT.You can use the

angle value multiplied by 1.745329E-2 to get the value of

the radian.The value of the input “IN” is radian .

SM1.1 is used for indicating overflow errors and illegal

values.

error conditions:

SM1.1 Overflow

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

125

6.7.6 TAN

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

TAN:Perform trigonometric operations on the input

radian value and put the result into OUT.You can use the

angle value multiplied by 1.745329E-2 to get the value of

the radian.The value of the input “IN” is radian .

SM1.1 is used for indicating overflow errors and illegal

values.

error conditions:

SM1.1 Overflow

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

126

6.7.7 LN

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

LN: Use the input value to perform natural logarithm

calculation and put the result in OUT.

The output value × 2.302585 ≈ Natural logarithm of 10

SM1.1 is used for indicating overflow errors and illegal values.

error conditions:

SM1.1 Overflow

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

127

6.7.8 EXP

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

EXP:Input value is N and output value is en .

N is a real number.

SM1.1 is used for indicating overflow errors and illegal

values.

Example：

5 cube = 5^3=EXP(3*LN(5))=125

The cube root of 125 = 125^(1/3)=EXP(1/3)*LN(125))=5

5 cubic square root = 5^(3/2)=EXP(3/2*LN(5))=11.18034

error condition:

0006 Indirect address

SM1.1 Overflow

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

128

6.7.9 PID

Input/output Operand Data type

TBL VB Byte

LOOP Constant(0 to 7) Byte

According to the parameters in the TBL,PID

instruction performs the PID operation.Up to 8 PID

instructions can be used in the program,the value

of LOOP is the loop number of PID.PID loop number

can not be the same, otherwise it will cause

interference.Parameters in the TBL parameter

table includes：Process, set value, output, gain, sampling time,

integration time, differential time, the last time integral term, the last

time the amount of the process.

The parameter table contains 36 bytes:

Offset Meaning Format Type Explain

0 PV n Process

quantity

DINT Input 0.0~1.0

4 SPn
Set point DINT Input 0.0~1.0

8 Mn Output value DINT Input/Output 0.0~1.0

12 Kc gain Input Ratio constant

16 Ts Sampling time DINT Input Ms Positive

20 T I Integral time DINT Input S Positive

24 T D Differential time DINT Input S Positive

28 MI n 1−
Last time

integral value

DINT Input/Output Last time

integral value

32 PV n 1−
Last time

process

DINT Input/Output Last time

process

129

Mathematical formula of PID loop instruction:

Mn = MPn + MIn + MDn

 Mn : Output value

 MPn : Proportion term

 MIn : Integral term

 MDn : Differential term

Proportion term

MPn = Kc * (SPn - PVn)

• MPn : Proportion term

• Kc : gain

• SPn : Set point

• PVn : Process quantity

Integral term:

MIn = Kc * Ts / TI * (SPn - PVn) + MIn-1

• MIn : Integral term

• Kc : gain

• Ts : Sampling time

• TI : Integral time

• SPn : Set point

• PVn : Process quantity

• MIn-1 : Last time integral term

Differential term:

MDn = Kc * TD / Ts * (PVn-1 - PVn)

• MDn : Differential term

130

• Kc : gain

• TD : Differential time

• Ts : Sampling time

• PVn-1 : Last time process variable

• PVn : Process variable

131

6.8 Integer operations

6.8.1 ADD-I&SUB-I

Input/output Operand Data type

IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, AC, LW, AIW,constant, *VD, *LD, *AC Integer

OUT VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *LD, *AC Integer

ADD-I: IN1 + IN2 = OUT Both input and output are 16

bits integers.

SUB-I：IN1 -IN2 = OUT Both input and output are 16 bits

integers.

In LAD and FBD：IN1 + IN2 = OUT

IN1 -IN2 = OUT

SM1.1 is used for indicating overflow errors and illegal

values.

error conditions:

0006 Indirect address

SM1.1 overflow

132

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

Example：

133

6.8.2 ADD- DI & SUB- DI

Input/output Operand Data type

IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, AC, HC,Constant, *VD, *LD, *AC Double integer

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double integer

ADD- DI: IN1 + IN2 = OUT Both input and output are 32

bits integers.

SUB- DI:IN1 - IN2 = OUT Both input and output are 32

bits integers.

In LAD and FBD：IN1 + IN2 = OUT

IN1 - IN2 = OUT

SM1.1 is used for indicating overflow errors and illegal

values.

error conditions:

0006 Indirect address

SM1.1 overflow

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

Example：

134

6.8.3 MUL & DIV

Input/output Operand Data type

IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, LW, AC, AIW,constant, *VD, *LD, *AC Integer

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double Integer

MUL:IN1 X IN2= OUT Input 16 bits integers and output

32 bits integer.

DIV：IN1/IN2= OUT Input 16 bits integers and the

output result is 32 bits.The result includes a 16 bits

remainder (high) and a 16 bits quotient (low).

In LAD and FBD：IN1 * IN2 = OUT

IN1 / IN2 = OUT

SM1.1 is used for indicating overflow errors and illegal values.

error conditions:

0006 Indirect address

SM1.1 overflow

SM1.3 The divisor is 0

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

SM1.3 The divisor is 0

135

Example:

6.8.4 MUL -I & DIV-I

Input/output Operand Data type

IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, LW, AC, AIW,constant, *VD, *LD, *Ac Integer

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC Integer

MUL -I: IN1 * IN2 = OUT Both input and output are 16

bits integers.

DIV-I: IN1 / IN2 = OUT Both input and output are 16 bits

integers. Output is quotient.There is no remainder.

If the output is larger than a word , then set overflow

bit.

In LAD and FBD：IN1 * IN2 = OUT

IN1 / IN2 = OUT

SM1.1 is used for indicating overflow errors and illegal values.

error conditions:

0006 Indirect address

SM1.1 overflow

SM1.3 The divisor is 0

136

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

SM1.3 The divisor is 0

Example:

137

6.8.5 MUL -DI & DIV -DI

Input/output Operand Data type
IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, HC, AC,constant, *VD, *LD, *AC Double integer
OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double integer

MUL -DI: IN1 * IN2 = OUT Both input and output are 32

bits integers.

DIV -DI: IN1 / IN2 = OUT Both input and output are 32

bits integers.

Output is quotient.There is no remainder.

In LAD and FBD:IN1 * IN2 = OUT
IN1 / IN2 = OUT

SM1.1 is used for indicating overflow errors and illegal values.
error conditions:

0006 Indirect address
SM1.1 overflow
SM1.3 The divisor is 0
Special memory bit:
SM1.0 Zero result
SM1.1 overflow
SM1.2 Negative result
SM1.3 The divisor is 0

Example:

138

6.8.6 INC-B & DEC-B

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte

INC-B: IN + 1 = OUT Both input and output are 8 bits

integers.

DEC-B:IN - 1 = OUT Both input and output are 8 bits

integers.

The two instructions operations do not take symbols.

In LAD and FBD：IN + 1 = OUT

IN - 1 = OUT

error conditions:

0006 Indirect address

SM1.1 overflow

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

Example:

139

6.8.7 INC-W & DEC-W

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, AC, AIW, LW, T, C,constant, *VD, *LD, *AC Integer

OUT VW, IW, QW, MW, SW, SMW, LW, AC, T, C, *VD, *LD, *AC Integer

INC-W: IN + 1 = OUT Both input and output are 16

bits integers.

DEC-W:IN - 1 = OUT Both input and output are 16

bits integers.

The two instructions operations take with symbols

(16#7FFF > 16#8000).

In LAD and FBD：IN + 1 = OUT

IN - 1 = OUT

error conditions:

0006 Indirect address

SM1.1 overflow

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

Example:

140

6.8.8 INC -DW & DEC -DW

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, HC,constant, *VD, *LD, *AC Double integer

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double integer

INC -DW: IN + 1 = OUT Both input and output are 32

bits double integers.

DEC -DW:IN - 1 = OUT Both input and output are 32

bits double integers.

In LAD and FBD：IN + 1 = OUT

IN - 1 = OUT

The two instructions operations take with symbols.

(16#7FFFFFFF > 16#80000000).

error conditions:

0006 Indirect address

SM1.1 overflow

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

Example:

141

6.9 Interrupt

6.9.1 ENI & DISI

Operand Data type

Nothing Nothing

Interrupt enable（ENI）:If the instruction is activated, all

interrupts can be used.

Interrupt disable（DISI）:If the instruction is activated,

all interrupts can not be used.

When the DISI instruction is used, the interrupt events

will be queued.

Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

142

Example：

143

6.9.2 RETI instruction

Operand Data type

Nothing Nothing

RETI：When the Logic in front of the RETI instruction is 1,

PLC execution returns from interrupt.

Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

Interrupt use guide

Interrupt routine offers a quick response to a particular internal or external event.

Interrupt routine should be concise and efficient, so it can accelerate the speed of

execution.

Limit: DISI, ENI, HDEF, LSCR, and END instructions can not be used in the interrupt

routine.

Example:

144

6.9.3 ATCH

Input/output Operand Data type

INT Constant 0-127 Byte

EVNT Constant 0-33 Byte

ATCH:The interrupt event (EVNT) is connected to the

interrupt routine number (INT) by the “ATCH” instruction ,

and then activates the interrupt event.

You can attach more than one interrupt events to an interrupt routine.However, an

interrupt event can not be attached to the multiple interrupt routines.When you

attach an interrupt event to an interrupt routine, the interrupt is automatically

enabled.When the DISI instruction is used, the interrupt events will be queued.

If you want to disable a single interrupt event, you can use the "DTCH" instruction.

Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

145

Example:

“ATCH” instruction only needs to be connected once.

146

6.9.4 DTCH

Input/output Operand Data type

EVNT Constant（0-33） Byte

Interrupt separation (DTCH) instruction cancels the

association between interrupt event (EVNT) and interrupt

routine, and disables the interrupt event.

The interrupt event (EVNT) is connected to the interrupt

routine number (INT) by the “ATCH” instruction , and then

activates the interrupt event.

You can attach more than one interrupt events to an interrupt routine.However, an

interrupt event can not be attached to the multiple interrupt routines.When you

attach an interrupt event to an interrupt routine, the interrupt is automatically

enabled.When the DISI instruction is used, the interrupt events will be queued.

If you want to disable a single interrupt event, you can use the "DTCH" instruction.

Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

147

Example:

148

6.9.5 Clear interrupt event

Input/output Operand Data type

EVNT Constant Byte

CLR - EVNT instruction will remove all types of EVNT

interrupt events in interrupt queue. This instruction is

used for removing unnecessary interrupts.

Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

Example:

149

6.10 Logic operation

6.10.1 INV -B

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD Byte

INV -B: The instruction performs the complement

operation to the input byte and puts the result in OUT.

error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

Example:

150

6.10.2 INV -W

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, T, C, AIW, LW, AC,constant, *VD, *AC, *LD word

OUT VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *AC, *LD word

INV -W:The instruction performs the complement

operation to the input word and puts the result in OUT.

error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

Example:

151

6.10.3 INV -DW

Input/output Operand Data type
IN VD, ID, QD, MD, SD, SMD, LD, HC, AC,constant, *VD, *AC, *LD Double word

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD Double word

INV -DW:The instruction performs the complement

operation to the input word and puts the result in OUT.

error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

Example:

152

6.10.4 WAND-B、WOR -B、WXOR -B

Input/output Operand Data type

IN1, IN2 VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD Byte

WAND -B:The instruction performs “And calculation”

on IN1 and IN2.Then puts the result in out.

WOR -B:The instruction performs “OR calculation” on

IN1 and IN2.Then puts the result in out.

WXOR -B:The instruction performs “XOR calculation”

on IN1 and IN2.Then puts the result in out.

error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

Example:

153

6.10.5 WAND-W、WOR -W、WXOR -W

Input/output Operand Data type

IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, AC, LW, AIW,constant, *VD, *AC, *LD word

OUT VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *AC, *LD word

WAND -W:The instruction performs “And calculation”

on IN1 and IN2.Then puts the result in out.

WOR -W:The instruction performs “OR calculation” on

IN1 and IN2.Then puts the result in out.

WXOR -W:The instruction performs “XOR calculation”

on IN1 and IN2.Then puts the result in out.

error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

Example:

154

6.10.6 WAND- DW、WOR -DW、WXOR -DW

Input/output Operand Data type

IN1, IN2 VD, ID, QD, MD, SMD, AC, LD, HC,constant, *VD, *AC, SD, *LD Double word

OUT VD, ID, QD, MD, SMD, LD, AC, *VD, *AC, SD, *LD Double word

WAND -DW:The instruction performs “And calculation”

on IN1 and IN2.Then puts the result in out.

WOR -DW:The instruction performs “OR calculation” on

IN1 and IN2.Then puts the result in out.

WXOR -DW:The instruction performs “XOR calculation”

on IN1 and IN2.Then puts the result in out.

error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

Example:

155

6.11 Move

6.11.1 Byte move

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte

MOV -B:The instruction moves the input byte (IN) to the

output byte (OUT), which does not change the original

value.

error condition:

0006 Indirect address

Example:

156

6.11.2 Word move

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, constant, AC, *VD, *AC, *LD word、integer

OUT VW, T, C, IW, QW, SW, MW, SMW, LW, AC, AQW, *VD, *AC, *LD word、integer

MOV -W:The instruction moves the input word (IN) to

the output word (OUT), which does not change the

original value.

error condition:

0006 Indirect address

Example:

157

6.11.3 Double word move

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, &VB, &IB, &QB,

&MB, &SB, &T, &C, &SMB, &AIW, &AQW AC,

constant, *VD, *LD, *AC Double word, double integer

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double word, double integer

MOV -DW:The instruction moves the input double word

(IN) to the output double word (OUT), which does not

change the original value.

You can use the "MOVE-D" instruction to create a

pointer.

error condition:

0006 Indirect address

Example:

158

6.11.4 Real number move

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number

MOV -R:The instruction moves the input real number (IN)

to the output real number (OUT), which does not change

the original value.

error condition:

0006 Indirect address

Example:

159

6.11.5 BLKMOV -B

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, *VD, *AC, *LD Byte

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte

OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *AC, *LD Byte

These successive“N”bytes which start with “IN” are

moved to OUT.

The range of N is from 1 to 255.

error conditions:

0006 Indirect address

0091 Operating number is out of range

Example:

160

6.11.6 BLKMOV -W

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, *VD, *LD, *AC word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AQW, *VD, *LD, *AC word

BLKMOV -W:These successive“N”words which start with
“IN” are moved to OUT.

The range of N is from 1 to 255.

error conditions:

0006 Indirect address

0091 Operating number is out of range

Example:

161

6.11.7 BLKMOV -D

Input/output Operand Data type

IN, OUT VD, ID, QD, MD, SD, SMD, LD, *VD, *AC, *LD Double word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte

BLKMOV - D：These successive“N”double words which
start with “IN” are moved to OUT.

The range of N is from 1 to 255.

error conditions:

0006 Indirect address

0091 Operating number is out of range

Example:

162

6.11.8 SWAP

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *AC, *LD word

SWAP:The instruction interchanges high byte and low

byte of the input word.

error conditions:

0006 Indirect address

Example:

163

6.11.9 MOV -BIR

Input/output Operand Data type

IN IB, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD byte

MOV -BIR:Instruction reads the actual input value(byte),then

writes the value to OUT. The process image register is not

updated.

error conditions:

0006 Indirect address

6.11.10 MOV -BIW

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD byte

OUT QB, *VD, *LD, *AC byte

MOV -BIW: The instruction writes the input value(IN) to

the actual input(OUT) and update the corresponding

process image register.

error conditions:

0006 Indirect address

164

6.12 Program control

6.12.1 FOR、NEXT

Input/output Operand Data type
INDX VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC Integer
INIT VW, IW, QW, MW, SW, SMW, T, C, AC, LW, AIW,constant, *VD, *LD, *AC Integer
FINAL VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AIW,constant, *VD, *LD, *AC Integer

FOR instruction executes instructions between FOR and

NEXT.You have to specify the current cycle count (INDX),

start value (INIT), and end value (FINAL).NEXT (NEXT)

instruction marks the end of the FOR loop, and the top

value of the stack is set to 1.Use FOR/NEXT to set the

number of loops.Each FOR instruction requires a NEXT

instruction.FOR/NEXT loops can be nested with 8

FOR/NEXT loops.After each execution of the FOR and

NEXT instructions, the INDX value is increased, and the

result is compared with the end value.If the INDX is

greater than the end value, the loop terminates.

error condition:

0006 indirect address

165

Example:

Notes：
Cycle times are set to 100 times.At the end of the cycle, the value of VW100 is 100.

166

6.12.2 Jump to label and label

Input/output Data type

n:constant（0~255） word

JMP instruction performs the branch operation to the

program in the specified tag (n) . When the jump is

accepted, the top value of the stack is 1.

LBL instruction signs the location of n.

You can use the "jump" instruction in the main

program, subroutine, or interrupt routine.

You can't jump from the main program to a subroutine

or an interrupt routine.You can use the "jump"

instruction in the SCR segment, but the corresponding

"label" instruction must be located within the same SCR segment.

Example:

When the M0.0 bit is 1, the value of VW100 is no longer increased.

167

6.12.3 Sequence control relay

Input/output Operand Data type

n S Boolean

SCR instruction is good at dealing with repetitive

operations.

SCR: load the SCR section, you can use the SET

instruction.

SCRT: Jump to another SCR segment and close the

current SCR segment.

SCRE: The instruction signs the end of SCR segment.

Example:

168

169

6.12.4 Return from subroutine

RET: Return from the subroutine to the main program.

Example：

Main program:

Subroutine:

When the M0.0 bit is 1, return from the subroutine, the following program will no

longer be scanned.

170

6.12.5 Conditional end

The END instruction terminates the user program .

Notes：

You can use the "END" instruction in the main program,

but can not be used in subroutine or interrupt routine.

Example:

When the M0.1 bit is 1, the program will not be scanned.

171

6.12.6 STOP

STOP instruction：STOP

Example:

When the M0.1 bit is 1, PLC converts to the STOP mode, all the programs stop

running.

172

6.12.7 Watchdog Reset

WDR clear watchdog time.When the scan cycle is

greater than the watchdog time, the WDR makes the

watchdog not issue a warning.

Using “WDR” instruction should be careful.The

following programs can be performed after the scan

cycle is completed.

1.Communication

2.I/O update (except for immediate I/O)

3.Forced update

4.SM bits update

5.Run time diagnostic program

6.STOP (stop) instruction for interrupt routine

Attention :If you expect scan time will be more than 500 ms, you should use the

WDR instruction to re trigger the watchdog timer.

Example:

173

6.12.8 Diagnosis LED

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC String

If the value of “EN” is 1, then the LCD will display the string

from “IN”.

Example:

When the value of M0.0 is equal to 1,the LCD will display “Error”.

174

6.13 Shift cycle

6.13.1 SHR -B & SHL -B

Input/output Operand Data type

IN (LAD, FBD) VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte

SHR -B:Input byte "IN" and move N bits towards the

right.Then place the results in OUT.

SHL -B: Input byte "IN" and move N bits towards the

left.Then place the results in OUT.

The moved out bits are filled with zero.If N is greater than

or equal to 8, you can move up to 8 bits.

SHR -B & SHL -B operations are not signed.

error conditions:

0006 Indirect address

Special memory bit:

SM1.0 Zero Result

SM1.1 Overflow

175

Example:

When the value of M0.0 is 1, VB0 moves a bit towards the left and VB10 moves a bit

towards the right.

176

6.13.2 SHR -W & SHL -W

Input/output Operand Data type

IN (LAD, FBD) VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC,constant, *VD, *LD, *AC word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC word

SHR -W:Input word "IN" and move N bits towards the

right.Then place the results in OUT.

SHL -W: Input word "IN" and move N bits towards the

left.Then place the results in OUT.

The moved out bits are filled with zero.If N is greater than

or equal to 16, you can move up to 16 bits.

SHR -W & SHL -W operations are signed. Symbol bit can

be moved.

error conditions:

0006 Indirect address

Special memory bit:

SM1.0 Zero Result

SM1.1 Overflow

Example:

When the value of M0.0 is 1, VW0 moves two bits towards the left and VW10 moves

two bits towards the right.

177

6.13.3 SHR -DW & SHL -DW

Input/output Operand Data type

IN (LAD, FBD) VD, ID, QD, MD, SD, SMD, LD, AC, HC,constant, *VD, *LD, *AC Double word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Double word

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double word

SHR -DW:Input double word "IN" and move N bits towards

the right.Then place the results in OUT.

SHL -DW: Input double word "IN" and move N bits towards

the left.Then place the results in OUT.

The moved out bits are filled with zero.If N is greater than

or equal to 32, you can move up to 32bits.

SHR -DW & SHL -DW operations are signed. Symbol bit can

be moved.

error conditions:

0006 Indirect address

Special memory bit:

SM1.0 Zero Result

SM1.1 Overflow

Example:

When the value of M0.0 is 1,VD0 moves a bit towards the left and VD10 moves two

bits towards the right.

178

6.13.4 ROR -B & ROL -B

Input/output Operand Data type

IN (LAD, FBD) VB, IB, QB, MB, SMB, SB, LB, AC,constant, *VD, *LD, *AC Byte

N VB, IB, QB, MB, SMB, SB, LB, AC,constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SMB, SB, LB, AC, *VD, *LD, *AC Byte

ROR -B & ROL -B :Instruction rotates the input byte to

the right or to the left n bits and puts the result in the

output byte (OUT).Rotation is cyclic.

If N is greater than or equal to 8,the remainder of N/8 is

the number of rotation bits.If remainder is equal to 0，

Rotation operation is not performed and the value of

SM1.0 is 1.If the rotation operation is performed, the

final rotation bit is copied to overflow bit (SM1.1).

ROR -B & ROL -B operations are not signed.

error conditions:

0006 Indirect address

Special memory bit:

SM1.0 When the value of the loop is zero, SM1.0 is set to 1.

SM1.1 Overflow bit

Example:

When the value of M0.0 is 1,VB0 moves a bit towards the left and VB10 moves a bit

towards the right circularly.

179

6.13.5 ROR -W & ROL -W

Input/output Operand Data type

IN (LAD, FBD) VW, T, C, IW, QW, MW, SW, SMW, LW, AC, AIW,constant, *VD, *LD, *AC word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

OUT VW, T, C, IW, QW, MW, SW, SMW, LW, AC, *VD, *LD, *AC word

ROR -W & ROL -W :Instruction rotates the input word to

the right or to the left n bits and puts the result in the

output word (OUT).Rotation is cyclic.

If N is greater than or equal to 16,the remainder of N/16

is the number of rotation bits.If remainder is equal to 0，

Rotation operation is not performed and the value of

SM1.0 is 1.If the rotation operation is performed, the

final rotation bit is copied to overflow bit (SM1.1).

ROR -W& ROL -W operations are not signed.

error conditions:

0006 Indirect address

Special memory bit:

SM1.0 When the value of the loop is zero, SM1.0 is set to 1.

SM1.1 Overflow bit

Example:

When the value of M0.0 is 1,VW0 moves a bit towards the left and VW10 moves two

bits towards the right circularly.

180

6.13.6 ROR -DW & ROL -DW

Input/output Operand Data type

IN (LAD, FBD) VD, ID, QD, MD, SD, SMD, LD, AC, HC,constant, *VD, *LD, *AC Double word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double word

ROR -DW & ROL -DW :Instruction rotates the input

double word to the right or to the left n bits and puts the

result in the output double word (OUT).Rotation is cyclic.

If N is greater than or equal to 32,the remainder of N/32

is the number of rotation bits.If remainder is equal to 0，

Rotation operation is not performed and the value of

SM1.0 is 1.If the rotation operation is performed, the

final rotation bit is copied to overflow bit (SM1.1).

ROR -DW& ROL -DW operations are not signed.

error conditions:

0006 Indirect address

Special memory bit:

SM1.0 When the value of the loop is zero, SM1.0 is set to 1.

SM1.1 Overflow bit

Example:

181

6.13.7 SHRB

Input/output Operand Data type

DATA, S_BIT I, Q, M, SM, T, C, V, S, L Boolean

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Boolean

SHRB instruction moves the DATA value to the shift

register. S_BIT specifies the lowest bit of the shift

register.N specifies the length of the shift register and the

shift direction (shift plus = N, shift minus = -N).The moved

out bit is placed in the overflow memory bit (SM1.1).The

instruction is defined by S_BIT and N.

error conditions:

0006 Indirect address

0091 Operating number is out of range

0092 Count field error

Special memory bit:

SM1.1 Overflow bit

Example:

When the value of M0.0 is 1，the value of M10.0 is moved to V0.0，the value of V0.0

is moved to V0.1，the value of V0.1 is moved to V0.2，the value of V0.2 is moved to

V0.3，the value of V0.3 is moved to SM1.1.

If N is negative, the shift direction is opposite.

182

6.14 Character string

6.14.1 String length

Input/output Operand Data type

IN VB,Constant string, LB, *VD, *LD, *AC Character string

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte

STR-LEN:Instruction output “IN” string length.

The longest constant string is 126 bytes.

error conditions:

0006 Indirect address

0091 Operand range

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

When the string is "123456", the length of the string is 6.

183

6.14.2 Copy string

Input/output Operand Data type

IN VB, Constant string, LB, *VD, *LD, *AC Character string

OUT VB, *VD, LB, *LD, *AC Character string

STR-CPY:Instruction copies the “IN” string to the “OUT”

string.

The longest constant string is 126 bytes.

error conditions:

0006 Indirect address

0091 Operand range

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

When M0.0 is 1,string starting with VB0 is copied to the string starting with

VB100 .VB100 storage is an integer 6，VB101 storage is character "1"，VB102 storage

is character "2"，VB103 storage is "3"，VB104 storage is "4"，VB105 storage is "5"，

VB106 storage is "6".

184

6.14.3 SSTR-CPY

Input/output Operand Data type

Iput VB,Constant string, LB, *VD, *LD, *AC string

INDX, N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

OUT VB, *VD, LB, *LD, *AC string

SSTR-CPY:Copy a portion of the input string to the OUT

string.If the value of INDX is X,copy the string starting from

the xth character.The length of the copy string is N.

The longest constant string is 126 bytes.

error conditions:

0006 Indirect address

0091 Operand range

009B Illegal index

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

Copy VB0 string.Copy the string starting from the second character.The length of the

copy string is 3.The result is placed VB100.

185

6.14.4 String catenate

Input/output Operand Data type

Input VB,Constant string, LB, *VD, *LD, *AC String

OUT VB, LB, *VD, *LD, *AC String

STR -CAT:Add the string specified by the IN to the string

specified by the OUT.

The longest constant string is 126 bytes.

error conditions:

0006 Indirect address

0091 Operand range

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

VB100 string is "123".After using the STR -CAT instruction, the VB100 string is

"123abc".

186

6.14.5 STR -FIND

Input/output Operand Data type

IN1, IN2 VB, constant string, LB, *VD, *LD, *AC string

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC byte

STR -FIND:The instruction searches for the string IN2 in

the string IN1 .Search starts from the OUT start position.If

you find a string that is the same as the string IN2, the

first character position of the string is written to the

OUT.If you do not find IN2 in IN1,OUT is set to 0.The

longest length of a single constant string is 126 bytes.The

longest comprehensive length of two constant strings is

240 bytes.

error conditions:

0006 Indirect address

0091 Operand range

009B Illegal index

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

187

6.14.6 Look for the first character in the string

Input/output Operand Data type

IN1, IN2 VB,constant string, LB, *VD, *LD, *AC string

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC byte

CHR -FIND: The instruction searches for the same character

as the string IN2 in the string IN1.Search starts from the

OUT start position.If a match character is found, the

character position is written to OUT.If a match character is

not found, the OUT is set to 0.

The longest length of a single constant string is 126

bytes.The longest comprehensive length of two constant strings is 240 bytes.

error conditions:

0006 Indirect address

0091 Operand range

009B Illegal index

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example：

188

6.15 Table

6.15.1 Last in first out

Input/output Operand Data type

TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, *LD, *AC word

DATA VW, IW, QW, MW, SW, SMW, LW, AC, T, C, AQW, *VD, *LD, *AC integer

LIFO:Instruction moves the latest (or last) entry in the table

to the output memory address.Remove the last entry in

the table (TBL) and move the value to the location

specified by DATA.Each time the instruction is executed,the

number of entries in the table reduces 1.

error conditions:

0006 Indirect address

0091 Operand range

SM1.5 Empty list

Special memory bit:

SM1.5 Empty list

Table Format:

VW200 The maximum number of entries

VW202 Entry count

W204 Data 0

VW206 Data 1

VW208 Data 2

..........

189

For example:

PLC program:

Data block:

Analysis:

When the value of M0.0 is equal to 1, the last entry of the table will be deleted and the value of

the last entry of the table will be moved to “VW300”.

When the value of M0.0 is equal to 1 :

VW202=3

VW210 is invalid

VW300=4

190

6.15.2 FIFO

Input/output Operand Data type

TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, *LD, *AC word

DATA VW, IW, QW, MW, SW, SMW, LW, AC, T, C, AQW, *VD, *LD, *AC integer

FIFO:Remove the first entry in the table (TBL) and move

the value to the location specified by DATA.All other

entries in the table move a location upward.Each time the

instruction is executed,the number of entries in the table

reduces 1.

error conditions:

0006 Indirect address

0091 Operand range

SM1.5 Empty list

Special memory bit:

SM1.5 Empty list

Table Format:

VW200 The maximum number of entries

VW202 Entry count

W204 Data 0

VW206 Data 1

VW208 Data 2

..........

191

For example:

PLC program：

Data block:

Analysis：

When the value of M0.0 is equal to 1, the first entry of the table will be deleted and the value of

the first entry of the table will be moved to “VW300”.

When the value of M0.0 is equal to 1 :

VW202=3

VW210 is invalid

VW300=1

192

6.15.3 Add to table

Input/output Operand Data type

DATA VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC,constant, *VD, *LD, *AC integer

TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, , *LD *AC word

AD -T- TBL:The instruction adds the word (DATA) to the

table (TBL).The first value in the table is the maximum

length of the table .The second value is the entry count

(EC),it specifies the number of entries in the table.Each

time you add new data to the table,the number of entries

adds 1.Table can contain up to 100 entries，not including

the first entry and the second entry.

error conditions:

0006 Indirect address

0091 Operand range

SM1.4 Table overflow

Special memory bit:

SM1.4 Table overflow

For example:

PLC program：

Data block:

193

When the value of M0.0 is equal to 1:

The value of VW202 + 1

The Table will have a new entry

The value of the new entry is equal to the value of VW300.

194

6.15.4 Memory fill

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC,constant, *VD, *LD, *AC integer

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AQW, *VD, *LD, *AC integer

FILL-N: The input value of “IN” is written to the “OUT” N

continuous words.

The range of N is from 1 to 255.

error conditions:

0006 Indirect address

0091 Operand range

Example:

195

6.15.5 Table Find

Input/output Operand Data type

TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, *LD, *AC word

PTN VW, IW, QW, MW, SW, SMW, AIW, LW, T, C, AC,constant, *VD, *LD, *AC integer

INDX VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC word

Table Find instruction:The instruction

searches the same data as “PTN” in the

table. “Table Find” starts form the

entry specified by INDX.If a matching

entry is found, the INDX points to the

entry in the table.To find the next

matching entry,you must add 1 to the

INDX before using the “Table Find”

instruction.If matching entry is not

found, the value of INDX is equal to the number of entries.

For example:

PLC program：

196

Data block:

When the value of M0.0 is equal to 1:

The table format of the “Table-Find” begins with the entry count.It doesn’t have the

“maximum number of entries”：

VW202 Entry Count

VW204 Data 0

VW206 Data 1

VW208 Data 2

VW210 Data 3

197

6.16 Timer

6.16.1 Switch on delay timer

Input/output Operand Data type

Txxx constant(T0 -T255) word

IN (LAD) Enable bit Boolean

IN (FBD) I, Q, M, SM, T, C, V, S, L,Enable bit Boolean

PT VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC,constant, *VD, *LD, *AC integer

TON:When the value of the input “IN” is equal to 1,

timer starts time.Timer current value of Txxx is the

current time (a multiple of the time base).When the

current value of the timer is equal to the preset time (PT),

the value of the timer bit is 1.When the value of the

input “IN” is equal to 0, timer current value is cleared.

TON, TONR and TOF timers have three kinds of resolutions.Each current

value is a multiple of the time base.For example, the number 50 in the

10 millisecond timer is 500 milliseconds.

Timer range:

Timer number Time base（ms） Time range (s)

T0 1 65.535
T1~T4 10 655.35
T5~T31 100 6553.5
T32 1 65.535
T33~T36 10 655.35
T37~T63 100 6553.5
T64 1 65.535
T65~T68 10 655.35
T69~T95 100 6553.5
T96 1 65.535
T97~T100 10 655.35

198

T101~T127 100 6553.5

Attention:

1.The value of each timer TXXX is different.

2.The resolution of the timer depends on the time base.For example, the error range

of the 10 millisecond timer is 10 milliseconds.

Example:

199

6.16.2 TONR

Input/output Operand Data type

Txxx Constant(T0—T255) word

IN (LAD) Enable bit Boolean

IN (FBD) I, Q, M, SM, T, C, V, S, L,Enable bit Boolean

PT VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC,constant, *VD, *LD, *AC Integer

TONR:When the value of the input “IN” is equal to 1,

timer starts time.Timer current value of Txxx is the current

time (a multiple of the time base).When the current value

of the timer is equal to the preset time (PT), the value of

the timer bit is 1.When the value of the input “IN” is equal

to 0, If the current value of the timer is less than the

preset value，timer current value is retained.Otherwise, the current value of the

timer is cleared.

Notes：

You can use TONR to accumulate multiple time intervals.

You can use the "recovery" (R) instruction to recover any timer.

You can only use the "recovery" instruction to recovery the TONR timer.

Example:

200

6.16.3 Disconnect delay timer

Input/output Operand Data type

Txxx constant(T0—T255) word

IN (LAD) Enable bit Boolean

IN (FBD) I, Q, M, SM, T, C, V, S, L,Enable bit Boolean

PT VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC,constant, *VD, *LD, *AC Integer

TOF: When the input is closed, the output will be closed

for a period of time.When the value of IN is 1, the bit of

the timer is 1 Immediately and timer current value is set to

0.When the value of IN is 0, the timer starts time.When the

current value is equal to the preset value,the bit of the

timer is 0.

Notes：

The value of each timer TXXX is different.

You can use the "recovery" (R) instruction to recover TOF timer.

Example:

201

6.16.4 Start time interval

Input/output Operand Data type

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double word

Reads the current value of the built-in 1 ms counter

and stores it in the OUT.

Example:

The value of VD4 is the conduction time of M0.0

202

6.16.5 Calculation interval time

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, HC, AC, *VD, *LD, *AC Double word

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double word

Calculates the time difference between the current time

and the time provided by the IN, and stores the time

difference in the OUT.

Example:

The value of VD4 is the conduction time of M0.0

203

6.17 Pulse train output

6.17.1 Pulse output

Input/output Operand Data type

F ID, QD, AID, AQD, MD, VD, HC, SMD, LD, *MD, *VD, *LD Double integer

N ID, QD, AID, AQD, MD, VD, HC, SMD, LD, *MD, *VD, *LD Double integer

OUT QX.X Bit

PLSY:When the value of the enable bit is 1,Instruction issues N

pulses.The pulse frequency is F.

PLSY instructions:

1.The frequency range of F is 10 ~ 40K (Hz).Different models have different

frequency ranges.Please set the frequency according to the specific model.Frequency

F can be changed in the process of pulse transmission, the sending pulse frequency is

also changed.

2.The range of N is 0 ~ 2147483647.If N is 0, the number of pulses is ignored.When n

is equal to 0 and the enable bit is 1, the PLSY instruction will send pulses ceaselessly.

When the pulse is sending, changing the value of N does not work.N changes will

be in effect after the next pulse.

3.If the value of the enable bit is 0, the pulse will stop sending.When the enable bit is

changed from 0 to 1，PLSY instruction sends new pulses and ignores the interrupted

pulses before.

4.The duty ratio of pulse transmission is 50%ON, 50%OFF.The transmission of

the pulse is completely processed by the hardware interrupt, which is not

affected by the scan period.

204

For example:

Attention:

Output point must be high speed output point.

For different PLC,the addresses of high speed output points may be different.

205

6.17.2 Pulse width modulation

Input/output Operand Data type

% IW, QW, AIW, AQW, MW, VW, T, C, SMW, LW, *MD, *VD, *LD Double word

T IW, QW, AIW, AQW, MW, VW, T, C, SMW, LW, *MD, *VD, *LD Double word

OUT Q Bit

Pulse width modulation (PWM) instruction

initializes the PWM hardware and sends high

speed pulses.

The input value of "%" =conduction time/period.

The input value of "T" is the period of the pulse

PWM description:

1.The unit of T is 1ms.

2.If the input value of "%" is 0 ,then the instruction does not output

the pulse.If the input value of "%" is equal to 100,the value of output

pulse is always 1.

3.When the pulse is sending, you can change the value of “%”and period

of the pulse . Then the value of “%” and period of pulse will change.

4.If the value of enable bit is 0,pulse sending will stop.When the enable

bit is changed from 0 to 1，PWM instruction restarts sending pulse.

For example:

The pulse period is 500 ms, the conduction time is 300 ms.

Attention:

Output point must be high speed output point.

For different PLC,the addresses of high speed output points may be different.

206

6.18 Subroutine

6.18.1 Using subroutine

Subroutine is used for program partitioning.When the main program calls subroutine

and performs the subroutine,subroutine executes all instructions to the end.Then,

the system returns to the main program.

Subroutine is used for program partitioning.It helps to read and manage programs. It

also helps to debug and maintain programs.You can use PLC more effectively by using

subroutine.Because all of the subroutine blocks are not scanned when they are not

called.

If the subroutine only references parameters and local memory,then the subroutine

can be moved.In order to move the subroutine,you can not use any global variables /

symbols (I, Q, M, SM, AI, AQ, V, T, C, S, AC absolute address).If the subroutine does

not call parameters (IN, OUT, or IN_OUT) or only uses local variables,You can export

the subroutine and import it into another project.

Conditions of using subroutine:

1.Create a subroutine

2.Define parameters in the local variable table.

3.Call subroutine from the appropriate POU (from the main program or another

subroutine)

Using subroutine does not save or restore the accumulator.

207

6.18.2 Using parameters to call subroutine

Subroutine may contain the transfer parameters.The parameter is defined in the local

variable table of the subroutine.Parameters must have a symbol name (up to 23

characters), a variable type, and a data type.Each subroutine can be set up to 16

IN/OUT parameters.

Local variable table has 4 types of variables.They are IN, IN-OUT, OUT and TEMP.

Parameter type and description

IN Parameters are transferred to the subroutine.If the parameter is a

direct address (e.g. VB10),the specified location value is transferred to the

subroutine.If the parameter is an indirect address (such as *AC1),the specified

location value is transferred to the subroutine.If the parameter is the data constant

(16#1234) or address (&VB100)，constants or addresses are transferred to the

subroutine.

IN_OUT The specified location value is transferred to the subroutine.The

result of subroutine operation is transferred to the specified same location .This

parameter does not allow to use constants (such as 16#1234) and addresses

(e.g.&VB100).

OUT The result of subroutine operation is transferred to the specified

location.Constants (such as 16#1234) and addresses (e.g. &VB100) are not allowed to

be used as output.

TEMP Any local memory which is not used as a transfer parameter can’t be

used for temporary storage in subroutine.

Parameter data type Illustration

Boolean It is used for unit input and output.

Byte, word, double word Input or output parameters without symbols.

208

Integer, double integer Input or output parameters with symbols.

Real number It identifies single precision floating point values.

String This data type is used as a four byte pointer to the string.

Enable bit Boolean enable bit can be used only for bit.It can be used as

input.

6.18.3 How to set up a subroutine

The following methods can be used to establish a subroutine:

1.Project manager→program block→Right click program block→Insert→subroutine

2.Project manager→program block→SBR-0→Right click SBR-0→Insert→subroutine

You can use the local variable table to define the parameters of the subroutine.

Notes：

1.Please remember that each POU in the program has an independent local variable

table.In the A subroutine, you can only use the A local variable table to define

variables.

2.Each subroutine can be set up to 16 IN/OUT parameters.If the number of

parameters is greater than 16, the program will generate errors.

3.You can write a subroutine in the program edit window.

4.Click on the label of POU that you want to edit.SO you can edit the POU in the

program edit window.

Editor inserts POU termination instruction automatically.（END for main，RET for SBR，

RETI for INT).

209

6.18.4 How to call a subroutine

You can call a subroutine from the main program, another subroutine or

an interrupt routine;You can’t call the subroutine from the subroutine

itself.

In LAD, the subroutine generates a block instruction.You can call the

block instruction to call the subroutine.

Steps to call a subroutine:

1. In program edit window,place the cursor on the position where you want

to place the subroutine.

2. Instructions→Subroutine,then select the subroutine that you

need.Double click on it.

210

Example：Four arithmetic operation

Main program:

211

Subroutine:

212

7.PLC storage area

7.1 Storage area types and properties

Region Illustration Bit Byte Word Double
Word

Retain Force

I Discrete
input and
image
register

Read /
write

Read /
write

Read /
write

Read /
write

NO YES

Q Discrete
output and
image
register

Read /
write

Read /
write

Read /
write

Read /
write

NO YES

M Internal
memory bit

Read /
write

Read /
write

Read /
write

Read /
write

YES YES

SM Special
memory bit
（SM0 -
SM29
Read-only)

Read /
write

Read /
write

Read /
write

Read /
write

NO NO

V Variable
memory

Read /
write

Read /
write

Read /
write

Read /
write

YES YES

T Timer
current value
and timer bit

Read /
write（T
bit）

NO Read /
write（T
Current
value）

NO T
current
value
YES

T bit
NO

C Counter
current value
and counter
bit

Read /
write（C
bit）

NO Read /
write（C
current
value）

NO C
current
value
YES

C bit
NO

HC Current
value of high
speed
counter

NO NO NO read-only NO NO

AI Analog input NO NO Read-only NO NO YES

AQ Analog
output

NO NO write only NO NO YES

AC Accumulator
register

NO Read /
write

Read /
write

Read /
write

NO NO

L Local
variable
memory

Read /
write

Read /
write

Read /
write

Read /
write

NO NO

213

S SCR Read /
write

Read /
write

Read /
write

Read /
write

NO NO

7.2 Direct and indirect addressing

When you write the program, you can use the three ways to address instruction:

1.Direct addressing

2.Symbol addressing

3.indirect addressing

Direct addressing

PLC can directly specify the memory area, size, and location;

In order to read/write a bit in the memory area, you need to specify the address. The

address Includes memory area identifier, byte address, a period and number.

Example:

Specifying byte、word and double word addresses are similar to specifying bit

address.

Example:

214

Symbolic addressing

Symbol addressing consists of letters, numbers and characters.

You can set the symbol of address by the following steps:

You can enter “start” as the address of I0.0

Indirect addressing

Indirect addressing uses pointer to access the data of memory. Pointer is a double

word.It contains the address of another memory location. Only V memory location, L

memory location or register accumulator (AC1, AC2, AC3) can be used as pointers.

PLC allows the pointer to access the following memory area：I、Q、V、M、S、T、C.

T and C can only use the current value.

215

Pointer consists of memory location and symbol "&”.

To specify the operand be a pointer , you should input an asterisk (*) in front of the

operand.

Example:The values stored in the VB200 and VB201 are moved to AC0.

As shown in the figure below, you can change the pointer value.Because the pointer

is a 32 bit value, you should use the double word instruction to modify the pointer

value.

Prompt：

If you use the pointer to execute the byte operation,the minimum pointer interval is

1.

If you use the pointer to execute the word operation,the minimum pointer interval is

2.

If you use the pointer to execute the double word operation,the minimum pointer

216

interval is 4.

If the value of the pointer is greater than the maximum value of the V memory,

program will generate errors.

The current value of the timer and counter is 16 bits,so the minimum pointer interval

is 2.

7.3 Bit, byte, word and double word access

Bit access

If you want to access a bit, you need to specify the address of the

bit.Address contains region identifier and byte number.Zero is the first

address of all data areas.The decimal point is used to separate the number

of bytes and the number of bits. The range of the number of the bits is

0~7. For example: M0.0

Byte, word and double word access

If you want to access byte, word or double word, you need to specify the

address.Address contains a region identifier, a letter and an address

number.

For example:

VB100 Access V memory address byte 100

VW100 Access V memory address bytes 100 and 101

VD100 Access V memory address bytes 100, 101, 102, and 103

7.4 Memory address range

Bit Byte Word Double Word

I I0.0~I31.7 IB IB0~IB31 IW IW0~IW3

0

ID ID0~ID28

Q Q0.0~Q31

.7

QB QB0~QB3

1

QW QW0~QW

30

QD QD0~QD

28

M M0.0~31. MB MB0~MB MW MW0~M MD MD0~MD

217

7.5 Data type

Data Type Data width Range

BOOL 1 0~1

BYTE 8 16#00~16#FF

WORD 16 16#0000~16#FFFF

DWORD 32 16#00000000~16#FFFFFFFF

SINT 8 -128~127

INT 16 -32768~32767

7 31 W30 28

S S0.0~S31.

7

SB SB0~SB31 SW SW0~SW

30

SD SD0~SD2

8

SM SM0.0~S

M551.7

SMB SMB0~SM

B551

SMW SMW0~S

MW550

SMD SMD0~S

MD548

T T0~T255 T T0~T255

C C0~C255 C C0~C255

V V0.0~V81

91.7

VB VB0~VB8

191

VW VW0~VW

8190

VD VD0~VD8

188

L L0.0~L63.

7

LB LB0~LB63 LW LW0~LW6

2

LD LD0~LD6

0

AC AC0~AC3 AC AC0~AC3 AC AC0~AC3

HC HC0~HC1

5

218

DINT 32 -2147483648~2147483647

USINT 8 0~255

UINT 16 0~65535

UDINT 32 0~4294967295

7.6 Constant

Unsigned integer range Signed integer range

Data size： Decimal digit：Hexadecimal digit： Decimal digit： Hexadecimal digit：

B（byte） 0~255 0~FF -128 ~+127 80~7F

W（word） 0~65535 0~FFFF -32768~+32767 8000~7FFF

D（double word)0~4294967295 0~FFFF FFFF -2147483648 8000 0000~

~+2147483647 7FFF FFFF

Data size： Decimal numbers (positive) Decimal number (negative)

D（double word) +1.175495E-38~+3.402823E+38 -1.175495E-38~-3.402823E+38

219

8.Assignment and function of SM special storage area

SMB0
Always_On SM0.0 Always ON

First_Scan_On SM0.1 ON for the first scan cycle only

Clock_60s SM0.4 30 seconds OFF,30 seconds ON

Clock_1s SM0.5 0.5 second OFF,0.5 second ON

SMB1

Result_0 SM1.0
Set to 1 by the execution of certain instructions when

the operation result = 0

Overflow_Illegal SM1.1
Set to 1 by exec. of certain instructions on overflow

or illegal numeric value.

Neg_Result SM1.2
Set to 1 when a math operation produces a negative

result

Divide_By_0 SM1.3 Set to 1 when an attempt is made to divide by zero

Table_Overflow SM1.4
Set to 1 when the Add to Table instruction attempts

to overfill the table

Table_Empty SM1.5
Set to 1 when a LIFO or FIFO instruction attempts to

read from an empty table

Not_BCD SM1.6
Set to 1 when an attempt is made to convert a non-BCD

value to a binary value

Not_Hex SM1.7
Set to 1 when an ASCII value cannot be converted to

a valid hexadecimal value

The PLC variables addresses of LCD keys:

F1 → SM191.0

F2 → SM191.1

F3 → SM191.2

F4 → SM191.3

ESC → SM190.0

OK → SM190.1

UP → SM190.2

DOWN → SM190.3

LEFT → SM190.4

RIGHT → SM190.5

When the value of SM192.0 is equal to 1,LCD will be bright.

When the value of SM192.0 is equal to 0,LCD will be dark.

SMW22-SMW26 Scan time

SMW22 Scan time of the last scan.

SMW24 Minimum scan time

SMW26 Maximum scan time

220

9.Easy ladder communication

9.1 PR series PLC basic introduction of network
communication

PR series PLC is designed to solve your communications and networking needs.It

supports both simple networks and complex networks .Easy ladder makes it simple

to set up and configure your network .

Master slave network definition

PR series PLC supports master slave network.It can be used as the master station or

the slave station in the network.Easy ladder is always used as the master station.

Master station:The master station can send a request to another device in the

network.The master station can also respond to requests from other master stations

in the network.

Slave station:The device which is configured to be the slave station can only respond

to requests from a master station;Slave station will not take the initiative to issue a

request.

The concept of baud rate and network address

The speed of transmission of data in the network is called the baud rate.Units are

kbaud and Mbaud.For example, 19.2 kbaud indicates that 19200 bits are transmitted

per second.

Each device must be the same baud rate in the network.So the communication speed

of the network is decided by the minimum baud rate of equipment.

The range of PR series PLC baud rate is 1200 bps~115200 bps.The default value is

9600bps.

Network address is a unique number that you specify for each device on the network.

Network address ensures that data is delivered to the correct device.The range of PR

series PLC network addresses is 0~255.If PLC has two ports, each port can have a

network address.

Set the baud rate and network address of EASY Ladder

Open the communication in project management:

221

You can set the station number, port, baud rate, parity and stop bit of easy ladder.The

default station number is 0.The default baud rate is 9600 bps.

Set the baud rate and network address of PR series PLC

Open system block in project management

You can set the station number, baud rate, data bits, parity bit and stop bit of PLC.

222

Attention:Only when Easy Ladder software station number is equal to 0

or PLC station number,you can download the program to PLC.

9.2 PR series PLC communication

PR series PLC support free port communication, MODBUS communication and CAN

communication.

Free port communication:

Free port communication is a half duplex communication based on RS-485

communication.Users can make their own communication protocol in free port

communication.Third party devices mostly support RS-485 serial communication .

The core of the free port communication are receiving and sending instructions.

RS-485 communication can not receive and send data at the same time.The RS-485

communication format includes a start bit, 7 or 8 bit characters, a parity bit,

and a stop bit.

Free port communication baud rate can be set to 1200, 2400, 4800, 9600, 19200,

38400, 57600 or 115200.Devices that meet the above conditions can communicate

with PLC.Free port mode has great flexibility.

Free port instructions:

UFP_RCV

UFP_RCV :Receive data instruction

l PORT: Communication port.

l TBL: Configuration table，If the input is MB200.

MB200 is the configuration byte:

（Instruction output）M200.0 Communication

preparation

（Instruction output）M200.1 Communication

completion

（Instruction output）M200.2 Communication error

（Instruction input）M200.3 Send CRC check

223

（Instruction input）M200.4 Send CRC check

（Instruction input）M200.5 Receive CRC check

（Instruction input）M200.6 Receive CRC check

（Instruction output）MB201 Error number：0indicates

no error.

l RCV: receive data,If the input is MB400:

（Instruction input）MW400: Receive data FIFO buffer

size (byte unit)

（Instruction output）MW402:The size of the received

data (in bytes)

（Instruction output）MB404 ~ … receive data.

UFP_XMT

UFP_XMT: Send data instruction

l PORT Communication port.

l TBL: Configuration table，If the input is MB200.

MB200 is the configuration byte:

（Instruction output）M200.0 Communication

preparation

（Instruction output）M200.1 Communication

completion

（Instruction output）M200.2 Communication error

（Instruction input）M200.3 Send CRC check

（Instruction input）M200.4 Send CRC check

（Instruction input）M200.5 Receive CRC check

（Instruction input）M200.6 Receive CRC check

（Instruction output）MB201 Error number：0indicates

no error.

224

l XMT Send data FIFO,If the input is MB400:

（Instruction input）MW400 Sending data FIFO buffer

size (byte unit)

（Instruction input）MW402 Sending data size (byte)

（Instruction input）MB404 ~ … Send data.

UFP_QAR

UFP_QAR: Sending and receiving data instruction

l PORT Communication port.

l TBL: Configuration table，If the input is MB200.

MB200 is the configuration byte:

（Instruction output）M200.0 Communication

preparation

（Instruction output）M200.1 Communication

completion

（Instruction output）M200.2 Communication error

（Instruction input）M200.3 Send CRC check

（Instruction input）M200.4 Send CRC check

（Instruction input）M200.5 Receive CRC check

（Instruction input）M200.6 Receive CRC check

（Instruction output）MB201 Error number：0indicates

no error.

l XMT :Send data FIFO,If the input is MB300:

（Instruction input）MW300 Sending data FIFO buffer

size (byte unit)

（Instruction input）MW302 Sending data size (byte)

（Instruction input）MB304 ~ … Send data.

225

l RCV receive data FIFO,If the input is MB400:

（Instruction input）MW400 Receive data FIFO buffer

size (byte unit)

（Instruction output）MW402 The size of the received

data (byte unit)

（Instruction output）MB404 ~ … Receive data.

UFP_RCV、UFP_XMT、UFP_QAR error numbers:

l 1 Port doesn’t exist

l 2 Port isn’t enabled

l 3 Communication task queue is full

l 4 Table error

l 5 Sent data error

l 6 Timeout

l 7 Received data error

l 8 Receive data check error

The use of free port communication instructions will be illustrated with

examples in the additional chapter.

226

MODBUS communication protocol

MODBUS protocol is a common language used in electronic controllers.Different

devices can communicate with each other by using the MODBUS communication protocol.

It has become a general industrial standard.You can use it to connect different

devices.

This protocol defines a message structure, no matter what network they use to

communicate.It describes the process of controller requesting to access other

devices.It has formulated message domain structure and the common format of the

content.

MODBUS network protocol determines that each controller should know its address.

It identifies the messages sent from different addresses and decides what action

to take.The controller generates feedback information, the format of the

information is the information format of MODBUS.It is issued through the MODBUS

protocol.

MODBUS address usually contains data type and offset.MODBUS address contains a

total of 5 characters.The first character represents the data type and the other

four characters represent the correct values in the data type.

MODBUS addressing:

0XXXX are discrete outputs

1XXXX are discrete inputs

3XXXX are analog inputs

4XXXX are hold registers

You can use“MODBUS address query” to query the MODBUS address of the variable，

Steps are as follows:

Menu bar→PLC→MODBUS address query

227

For example:Query the MODBUS address of Q0.0 :

MODBUS instructions:

UMB03

Read more than one hold registers

l EN：enable or not enable

l TBL:Configuration table,If the input is MB200:

MB200 is the configuration word

（ Instruction Output ） M200.0 Communications have been

queued

（Instruction Output ）M200.1 Communication completion

（Instruction Output）M200.2 Communication error

（Instruction Output）MB201 is error number.0 indicates no

error.

l SLA：MODBUS slave address

l ADDR： The offset of hold register（The offset of 4X）

l CNT： Number of hold register

l LDAT： Store the data which was written from slave station

228

UMB04

Read the input register

l EN：enable or not enable

l TBL:Configuration table,If the input is MB200:

MB200 is the configuration word

（ Instruction Output ） M200.0 Communications have been

queued

（Instruction Output ）M200.1 Communication completion

（Instruction Output）M200.2 Communication error

（Instruction Output）MB201 is error number.0 indicates no

error.

l SLA: MODBUS slave address

l ADDR:The offset of input register.（The offset of 3x）

l CNT：Number of input registers.

l LDAT: Store the data which was written from slave station

UMB06

Write a single hold register
l EN：enable or not enable

l TBL:Configuration table,If the input is MB200:

MB200 is the configuration word

（ Instruction Output ） M200.0 Communications have been

queued

（Instruction Output ）M200.1 Communication completion

（Instruction Output）M200.2 Communication error

（Instruction Output）MB201 is error number.0 indicates no

error.

l SLA：MODBUS slave address

l ADDR：The offset of hold register（The offset of 4X）

l LDAT：Store the data which will be written to the slave

station.

229

UMB16

Write more than one hold registers

l EN：enable or not enable

l TBL:Configuration table,If the input is MB200:

MB200 is the configuration word

（Instruction Output ）M200.0 Communications have been queued

（Instruction Output ）M200.1 Communication completion

（Instruction Output）M200.2 Communication error

（Instruction Output）MB201 is error number.0 indicates no

error.

l SLA：MODBUS slave address

l ADDR： The offset of hold register（The offset of 4X）

l CNT： Number of hold register

LDAT：Store the data which will be written to the slave station.

The use of MODBUS communication instructions will be illustrated with

examples in the additional chapter.

CAN communication

CAN communication is not stable at present.Suggest you choose other means of

communication.

The use of CAN communication instructions will be illustrated with

examples in the additional chapter.

230

9.3 Optimize network performance

The following factors will affect the performance of the network（The baud

rate and the master station produce the greatest impact to the performance

of the network)：

Baud rate:It determines the speed of network communication.

Number of master stations on the network:To enhance network

performance,you can reduce the number of main stations on the network.Each

station on the network will increase the additional requirements of the

network.

Select master station and slave station addresses:The master station

address should be continuous.When there is an spacing address between the

master stations, the master station will check the spacing address

ceaselessly and see if there is another master station waiting to be on

line.So the master station spacing address will increase the additional

requirements of the network.You can set the slave address to any value.But

slave station address can not be placed between the master station

addresses.Or it will increase the additional requirements of the network.

231

10.Additional chapter

10.1 How to switch PLC mode

Ladder diagram→FBD

1.Ensure that there is no power supply to the PLC.

2.Press ESC key and UP key,Keep pressing.

3.Power supply to PLC.Keep pressing until the following picture

appears.

4.Release the hand, press the OK key

FBD→Ladder diagram

Repeat the above steps.

232

10.2 Value range of analog quantity:

0~10v → 0~1000

0~20ma →0~1000

4~20ma →0~1000

-50℃~200℃→-500~2000

When you use the PT100 module，The value range of the analog quantity is

-500~2000.It corresponds to the temperature that is -50℃~200℃.

10.3 Extension module address

You can use the dial switch to set the address.The address of each

extension module can not be the same.

Digital quantity input extension address table:

Digital quantity output extension address table:

Extension

Address

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Start

Address

I2.

0

I3.

0

I4.

0

I5.

0

I6.

0

I7.

0

I8.

0

I9.

0

I10

.0

I11

.0

I12

.0

I13

.0

I14

.0

I15

.0

I16

.0

I17

.0

Extension

Address

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Start

Address

Q2.

0

Q3.

0

Q4.

0

Q5.

0

Q6.

0

Q7.

0

Q8.

0

Q9.

0

Q10

.0

Q11

.0

Q12

.0

Q13

.0

Q14

.0

Q15

.0

Q16

.0

Q17

.0

233

Analog quantity input extension address table:

Analog quantity output extension address table:

10.4 PLC host address range

Digital input：I0.0~I1.7

Digital output：Q0.0~Q1.7

Analog input：AIW0~AIW18

Analog output：AQW0~AQW18

10.5 Formula

Digital quantity extension addressing formula:

Digital input Start Address=I（Extension Address+1）.0

Digital output Start Address=Q（Extension Address+1）.0

Analog quantity extension addressing formula:

Extension

Address

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Start

Address

AIW

20

AIW

30

AIW

40

AIW

50

AIW

60

AIW

70

AIW

80

AIW

90

AIW

100

AIW

110

AIW

120

AIW

130

AIW

140

AIW

150

AIW

160

AIW

170

Extension

Address

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Start

Address

AQW

20

AQW

30

AQW

40

AQW

50

AQW

60

AQW

70

AQW

80

AQW

90

AQW

100

AQW

110

AQW

120

AQW

130

AQW

140

AQW

150

AQW

160

AQW

170

234

Analog input Start Address=AIW（Extension Address ×10+10）

Analog output Start Address=AQW（Extension Address ×10+10）

Up to 16 extension modules can be connected.

10.6 Set extension module address with a dial switch

The address of extension module = The value of dial switch + 1

Dial switch Value
1 → 1
2 → 2
3 → 4
4 → 8

The value of dial switch The address of

extension module1 2 3 4

OFF OFF OFF OFF 1

ON OFF OFF OFF 2

OFF ON OFF OFF 3

OFF OFF ON OFF 5

OFF OFF OFF ON 9

ON ON OFF OFF 4

ON OFF ON OFF 6

ON OFF OFF ON 10

OFF ON OFF ON 11

OFF OFF ON ON 13

OFF ON ON OFF 7

ON ON ON OFF 8

235

ON ON OFF ON 12

ON OFF ON ON 14

OFF ON ON ON 15

ON ON ON ON 16

10.7 Additional instructions

10.7.1 LCD related instructions

LCD_KEY

LCD_KEY binds LCD keys and PLC variables.

l EN：Enable

l MODIFY：Modifies the corresponding variables.

l ENTER：Confirms the corresponding variables.

l UP：The corresponding variable of UP key.

l DOWN:The corresponding variable of DOWN key.

l LEFT：The corresponding variable of LEFT key.

l RIGHT:The corresponding variable of RIGHT key.

LCD_PAGE

LCD_PAGE instruction binds the LCD display page.

l EN:Enable

l MASK：The current page group mask, generally 1.

l INDX：Currently displayed page number.you can

modify the page number,the LCD will display the

page.

236

Supplementary explanation:MASK input is a byte.Take VB0 as an example:

VB0

7 6 5 4 3 2 1 0

When 0 bit is equal to 1, LCD will display 0 group.

When 1 bit is equal to 1, LCD will display 1 group.

When 2 bit is equal to 1, LCD will display 2 group.

.

.

.

When 7 bit is equal to 1, LCD will display 7 group.

LCD_EDIT

LCD_EDIT: Binds the PLC variable to the edit state of

the LCD.

l EN：Enable

l UNIT：Edit the number of objects in the page

l AUTO：Whether uses LCD keys to edit.

l DEPTH：The current edit depth of edit object.

l LOOP：LOOP edit.

l FLASH：The edit object is flashing or not.

l V：The current value of edit object.

l VMIN：The minimum value of edit object.

l VMAX：The maximum value of edit object.

237

For example：

You have to edit display pages in LCD software.

Display page 1:

Display page 2:

Display page 3:

Display page 4:

238

Grouping of display pages in display page property:

Display page 1：Display page 1 is divided into 0 group and 1 group.

Display page 2：Display page 2 is divided into 0 group and 1 group.

Display page 3：Display page 3 is divided into 0 group.

Display page 4：Display page 4 is divided into 0 group.

239

PLC program:

Analysis:

In network 0,the program binds LCD keys and PLC variables.

PLC has ten function keys.Each function key corresponds to a PLC variable.

F1 corresponds to SM191.0

F2 corresponds to SM191.1

F3 corresponds to SM191.2

240

F4 corresponds to SM191.3

ESC corresponds to SM190.0

OK corresponds to SM190.1

UP corresponds to SM190.2

DOWN corresponds to SM190.3

LEFT corresponds to SM190.4

RIGHT corresponds to SM190.5

NETWORK 0:

MODIFY is ESC function key，corresponds to SM190.0

The functions of function keys:

You can customize F1~F4.

ESC is used for modifying values and exiting edit.

OK is used for confirming modified values.

UP and DOWN function keys can toggle display page .They can also increase

or decrease values.

LEFT and RIGHT function keys can be used for toggling edit objects.

The function of NETWORK1 is binding PLC variables and LCD pages.

Operation result:

The display page 1 of the 0 group is displayed by default.The value of

241

VB200 is 1.0 bit is equal to 1,so LCD displays 0 group.The value of VB201

is 0, which means the first display page.The first display page is display

page 1.

You can use the program to specify the display group and the display page .

For example:

The LCD will display group 1 and display page2.

If you use LCD function keys to toggle the display pages,the value of VB201

will change.

NETWORK2:

LCD -EDIT instruction binds the PLC variables and LCD edit states.

242

For example:

When you modify the first variable of display page 1:

The instruction will display as follows:

Vb205 = 0 Variable 0,the first variable.

Vb206 = 1 It means that you can use LCD function keys to edit variables.

Vb207 = 1 It means you can modify single digit.Vb207 = 2,you can modify

single digit and tens digit.

Vb208 = 0 No loop

Vb209 = 0 No flicker

Vd210 = 0 The current value of variable is 0

Vd214 = -30000 The minimum value is -30000

Vd218 = 30000 The maximum value is 30000

243

For example:

Modify the value of variable to 161.

For example:

Modify text list

VB205 Variable 1, the second variable.

VB206 It means that you can use LCD function keys to edit variables.

VB207 Edit depth is 1.

VB208 LOOP

VB209 No flicker

VD210 The current value of variable is 1

VD214 The minimum value is 0

VD218 The maximum value is 1

244

10.7.2 CAN, serial port initialization instructions

UART_Init CAN_Init

CAN_Init instruction is used to initialize the CAN port.

l EN：If the input value is 1,the instruction will initialize

the CAN port.

l PORT：port number，0~1。

l BR：CAN port baud rate

UART_Init instruction is used to initialize the serial port.

l EN：If the input value is equal to 1,the instruction will

initialize the serial port.

l PORT：port number，0 - 2。

l BR：Serial port baud rate.

l DBIT：The number of serial data bit.

l PR：Serial port check bit，0=No parity，1=Odd check，2=Parity

check

l SBIT：Stop bit

l DONE：success=1，fail=0

You can also set these parameters in the programming software.

As shown in the following picture:

245

10.8 Example of serial port free port communication

Program 1：

246

Explain：Send data 11 22 33 44 per second through port 1.And record the

counts of sending data.

Program 2:

Explain：Receive data through port 1.The maximum length of the data is

100 bytes.

247

10.9 Example of CAN free port

248

Explain：The state of the I0.0 is transmitted through port 0.Receive data

VB106 through port0. The state of the first bit of VB106 is the state of

Q0.0

249

10.10 MODBUS communication master program

Read multiple hold registers and write multiple hold registers

250

10.11 The example of using PID instruction

The initialization of PID parameters

VD112 gain

VD116 Sampling time

VD120 Integral time

VD124 Differential time

251

Conversion of Process quantity and set value unit

252

Call a PID command every 0.3 seconds.

253

The conversion of output value unit .

